Moticon Marketing Moticon Marketing 100% 8 K46 Archive of Applied Mechanics Archive of Applied Mechanics Turn on screen reader support To enable screen reader support, press Ctrl+Alt+Z To learn about keyboard shortcuts, press Ctrl+slashMaximilian Müller has joined the document.

| 2019

An individualized simulation model based on continuous, independent, ground force measurements after intramedullary stabilization of a tibia fracture

Benedikt J. Braun, Tim Pohlemann, Steven C. Herath, Moritz Klein, Mika F. Rollmann, Ralf Derr, Stefan Diebels, Michael Roland

Chair of Applied Mechanics, Saarland University, Saarbrücken

Keywords

Interfragmentary move, Patient-specific simulations, Continuously measured gait data, Tibial fracture, Intramedullary nailing

Abstract

The interfragmentary movement (IFM) is a key determinant for the fracture healing process. Different simulation models allow the prediction of the IFM in the fracture gap based on an estimated ground force. For this purpose, a workflow capable for implementation into the clinical routine workup was developed as a proof of concept based on individualized IFM simulations. Starting with clinical X-ray image data, a personalized computational model of the tibial shaft fracture and the intramedullary stabilization was set up in a computer-aided design system, assigned with material parameters, equipped with patient-specific boundary conditions and passed to finite element simulations. We obtained continuously measured postoperative patient gait data from a novel pedobarography insole, mapped the gait data onto an OpenSim gait model and used the resulting forces as input for the simulation of the IFM during a step forward and a step downstairs. In order to verify the simulation results with respect to the IFM, a series of different configurations for the bone material parameters are tested combined with different levels of mesh discretization. The results show IFM values comparable in range to simulation results based on validated OrthoLoad data for even surface gait as well as during walking downstairs. The computed shear movements in the coronal and the sagittal planes were low, and a complete fracture healing of the patient was observed after 6 months. The presented simulation-based workflow can determine the patients’ weight-bearing specific interfragmentary movement after an intramedullary stabilization of a tibial shaft fracture.

Moticon's Summary

Contact Us
Book a free online demo or use the contact form to get in touch
Newsletter
Subscribe to our newsletter for regular updates

Select your desired system

The cutting edge test based outcome assessment system for health professionals and trainers

The most versatile toolkit for free data acquisition and comprehensive analytics in research

Have a general inquiry?

Write us a message for general questions about products and solutions or if you’d like to discuss other topics.


The form was sent successfully.

You will be contacted shortly.

moticon-rego-sensor-insole-live-event

Stay one step ahead!

Subscribe to our newsletter for the latest information on case studies, webinars, product updates and company news

Get support

Check our FAQ database for answers to frequently asked questions

Describe your issue in as much detail as possible. Include screenshots or files if applicable.


Need help?
Want a live demo?
Interested in prices?
Want to say hello?
Always just a call away
+49 89 2000 301 60