Contact
Need help?
For technical questions about your Moticon products
Want to say hello?
Drop us a message for general questions or inquiries
Want a live demo?
See our products live and ask your questions
Interested in prices?
Get an individual quote with the items you need
Always just a call away
+49 89 2000 301 60

Sensors

| 2019

Continuous Analysis of Running Mechanics by Means of an Integrated INS/GPS Device

This paper describes a single body-mounted sensor that integrates accelerometers, gyroscopes, compasses, barometers, a GPS receiver, and a methodology to process the data for biomechanical studies. The sensor and its data processing system can accurately compute the speed, acceleration, angular velocity, and angular orientation at an output rate of 400 Hz and has the ability to collect large volumes of ecologically-valid data. The system also segments steps and computes metrics for each step. We analyzed the sensitivity of these metrics to changing the start time of the gait cycle. Along with traditional metrics, such as cadence, speed, step length, and vertical oscillation, this system estimates ground contact time and ground reaction forces using machine learning techniques. This equipment is less expensive and cumbersome than the currently used alternatives: Optical tracking systems, in-shoe pressure measurement systems, and force plates. Another advantage, compared to existing methods, is that natural movement is not impeded at the expense of measurement accuracy. The proposed technology could be applied to different sports and activities, including walking, running, motion disorder diagnosis, and geriatric studies. In this paper, we present the results of tests in which the system performed real-time estimation of some parameters of walking and running which are relevant to biomechanical research. Contact time and ground reaction forces computed by the neural network were found to be as accurate as those obtained by an in-shoe pressure measurement system.

Keywords

gait analysis, INS/GPS, machine learning, neural networks, sports equipment, velocity measurement

Author/s

Pavel Davidson, Heikki Virekunnas, Dharmendra Sharma. Robert Piché, Neil Cronin

Institution / Department

Faculty of Information Technology and Communication Sciences, Tampere University

The form was sent successfully.

You will be contacted shortly.

moticon-rego-sensor-insole-live-event

Stay one step ahead!

Subscribe to our newsletter for the latest information on case studies, webinars, product updates and company news

Get support

Check our FAQ database for answers to frequently asked questions!


Describe your issue in as much detail as possible. Include screenshots or files if applicable.


Have a general inquiry?

Write us a message for general questions about products and solutions or if you’d like to discuss other topics.