2022

Doctor Thesis

Detecting and Assessing Older Adults’ Stressful Interactions with the Built Environment: An Elderly-Centric and Wearable Sensing-Based Approach

Alex Torku

The Hong Kong Polytechnic University Department of Building and Real Estate

Keywords

elderly, wearables

Abstract

Not only is the global population ageing, but also the built environment infrastructure in many cities and communities are approaching their design life or showing significant deterioration. Such built environment conditions often become an environmental barrier that can either cause stress and/or limit the mobility of older adults in their neighbourhood. Current approaches to detecting stressful environmental interactions are less effective in terms of time, cost, labour, and individual stress detection. This study harnesses the recent advances in wearable sensing technologies, machine learning intelligence and hotspot analysis to develop and test a more efficient approach to detecting older adults' stressful interactions with the environment. Specifically, this study monitored older adults' physiological reactions (Photoplethysmogram and electrodermal activity) and global positioning system (GPS) trajectory using wearable sensors during an outdoor walk. Machine learning algorithms, including Gaussian Support Vector Machine, Ensemble bagged tree, and deep belief network were trained and tested to detect older adults' stressful interactions from their physiological signals, location and environmental data. The Ensemble bagged tree achieved the best performance (98.25% accuracy). The detected stressful interactions were geospatially referenced to the GPS data, and locations with high-risk clusters of stressful interactions were detected as risk stress hotspots for older adults. The detected risk stress hotspot locations corresponded to the places the older adults encountered environmental barriers, supported by site inspections, interviews and video records. The findings of this study will facilitate a near real-time assessment of the outdoor neighbourhood environment, hence improving the age-friendliness of cities and communities.

Moticon's Summary

This dissertation is concerned with the issue of global population ageing and the interaction of the older population with their environment's infrastructure. Inadequate infrastructure might pose barriers for elderly in terms of mobility and could result in stressful interactions with their environment. The aim of this dissertation was to promote mobility in the elderly by identifying potential barriers and examining the influence of environment on stress response. To that end, among other sensor systems, Moticon sensor insoles were used to obtain gait data in the examination of mobility barriers. The author developed a framework to identify barriers in infrastructure to inform adequate urban planning.

Contact Us
Book a free online demo or use the contact form to get in touch
Newsletter
Subscribe to our newsletter for regular updates

Schedule an Online Demo

Get a hands-on overview of our products, find the best choice, discuss your application and ask questions.

30 minutes

Web conferencing details provided upon confirmation

You Would Like to Get in Touch?

Write us a message on product related questions or with regards to your application.  We are here to assist!


Stay one step ahead!

Subscribe to our newsletter for the latest information on case studies, webinars, product updates and company news

The form was sent successfully.

You will be contacted shortly.

Get Support

Check our FAQ database for answers to frequently asked questions

Describe your issue in as much detail as possible. Include screenshots or files if applicable.