| 2020

Evaluating the Performance of Balance Physiotherapy Exercises Using a Sensory Platform: The Basis for a Persuasive Balance Rehabilitation Virtual Coaching System

Keywords

Abstract

Rehabilitation programs play an important role in improving the quality of life of patients with balance disorders. Such programs are usually executed in a home environment, due to lack of resources. This procedure usually results in poorly performed exercises or even complete drop outs from the programs, as the patients lack guidance and motivation. This paper introduces a novel system for managing balance disorders in a home environment using a virtual coach for guidance, instruction, and inducement. The proposed system comprises sensing devices, augmented reality technology, and intelligent inference agents, which capture, recognize, and evaluate a patient’s performance during the execution of exercises. More specifically, this work presents a home-based motion capture and assessment module, which utilizes a sensory platform to recognize an exercise performed by a patient and assess it. The sensory platform comprises IMU sensors (Mbientlab MMR© 9axis), pressure insoles (Moticon©), and a depth RGB camera (Intel D415©). This module is designed to deliver messages both during the performance of the exercise, delivering personalized notifications and alerts to the patient, and after the end of the exercise, scoring the overall performance of the patient. A set of proof of concept validation studies has been deployed, aiming to assess the accuracy of the different components for the sub-modules of the motion capture and assessment module. More specifically, Euler angle calculation algorithm in 2D (R2 = 0.99) and in 3D (R2 = 0.82 in yaw plane and R2 = 0.91 for the pitch plane), as well as head turns speed (R2 = 0.96), showed good correlation between the calculated and ground truth values provided by experts’ annotations. The posture assessment algorithm resulted to accuracy = 0.83, while the gait metrics were validated against two well-established gait analysis systems (R2 = 0.78 for double support, R2 = 0.71 for single support, R2 = 0.80 for step time, R2 = 0.75 for stride time (WinTrack©), R2 = 0.82 for cadence, and R2 = 0.79 for stride time (RehaGait©). Validation results provided evidence that the proposed system can accurately capture and assess a physiotherapy exercise within the balance disorders context, thus providing a robust basis for the virtual coaching ecosystem and thereby improve a patient’s commitment to rehabilitation programs while enhancing the quality of the performed exercises. In summary, virtual coaching can improve the quality of the home-based rehabilitation programs as long as it is combined with accurate motion capture and assessment modules, which provides to the virtual coach the capacity to tailor the interaction with the patient and deliver
personalized experience.

Contact Us
Book a free online demo or use the contact form to get in touch
Newsletter
Subscribe to our newsletter for regular updates

Select your desired system

The cutting edge test based outcome assessment system for health professionals and trainers

The most versatile toolkit for free data acquisition and comprehensive analytics in research

Have a general inquiry?

Write us a message for general questions about products and solutions or if you’d like to discuss other topics.


The form was sent successfully.

You will be contacted shortly.

moticon-rego-sensor-insole-live-event

Stay one step ahead!

Subscribe to our newsletter for the latest information on case studies, webinars, product updates and company news

Get support

Check our FAQ database for answers to frequently asked questions

Describe your issue in as much detail as possible. Include screenshots or files if applicable.


Need help?
Want a live demo?
Interested in prices?
Want to say hello?
Always just a call away
+49 89 2000 301 60