Multimedia Tool and Applications

| 2018

Intelligent cyber-physical system for an efficient detection of Parkinson disease using fog computing

Malathi Devarajan, Logesh Ravi

School of Computing, SASTRA Deemed University, Thanjavur


Internet of things, Fog computing, Cloud computing, FKNN-CBR, Parkinson’s disease, Hybrid classifier


Parkinson’s disease is one of the notable neurodegenerative disorders caused by insufficient production of dopamine which damages the motor skills and voice. Advancement of the Internet of Things (IoT) has fuelled the development of healthcare systems. In this article, we propose an intelligent system for detecting Parkinson’s disease to provide proper medication by analysing voice samples. Instead of relying on limited storage capacity and computational resources of IoT, the recent healthcare systems take advantages of the cloud server. On the other hand, the utilization of cloud computing incurs the issues of data privacy and additional communication costs to the healthcare systems. To address this issue, we propose to utilize Fog computing as a midway layer between end devices and the cloud server. The proposed system employs the combinatorial Fuzzy K-nearest Neighbor and Case-based Reasoning classifier for the better classification of the Parkinson patients from healthy individuals. On the detection of abnormality, the proposed healthcare system is designed to generate an immediate alert to the patient. The proposed system is experimentally evaluated on the UCI-Parkinson dataset, and the results reveal the improved performance of our system over baseline approaches.

Moticon's Summary

Contact Us
Book a free online demo or use the contact form to get in touch
Subscribe to our newsletter for regular updates

Select your desired system

The cutting edge test based outcome assessment system for health professionals and trainers

The most versatile toolkit for free data acquisition and comprehensive analytics in research

Have a general inquiry?

Write us a message for general questions about products and solutions or if you’d like to discuss other topics.

The form was sent successfully.

You will be contacted shortly.


Stay one step ahead!

Subscribe to our newsletter for the latest information on case studies, webinars, product updates and company news

Get support

Check our FAQ database for answers to frequently asked questions

Describe your issue in as much detail as possible. Include screenshots or files if applicable.

Need help?
Want a live demo?
Interested in prices?
Want to say hello?
Always just a call away
+49 89 2000 301 60