2021

Entropy

Optimal Frequency and Amplitude of Vertical Viewpoint Oscillation for Improving Vection Strength and Reducing Neural Constrains on Gait

Wei Wang, Kaiming Yang, Yu Zhu

Beijing Key Laboratory of Precision and Ultra-Precision Manufacturing Equipment and Control, Department of Mechanical Engineering, Tsinghua University, Beijing, China

Keywords

gait complexity, viewpoint oscillation, self-motion illusion, virtual walking, multiscale entropy

Abstract

Inducing self-motion illusions referred as vection are critical for improving the sensation of walking in virtual environments (VE). Adding viewpoint oscillations to a constant forward velocity in VE is effective for improving vection strength under static conditions. However, the effects of oscillation frequency and amplitude on vection strength under treadmill walking conditions are still unclear. Besides, due to the visuomotor entrainment mechanism, these visual oscillations would affect gait patterns and be detrimental for achieving natural walking if not properly designed. This study was aimed at determining the optimal frequency and amplitude of vertical viewpoint oscillations for improving vection strength and reducing gait constraints. Seven subjects walked on a treadmill while watching a visual scene. The visual scene presented a constant forward velocity equal to the treadmill velocity with different vertical viewpoint oscillations added. Five oscillation patterns with different combinations of frequency and amplitude were tested. Subjects gave verbal ratings of vection strength. The mediolateral (M-L) center of pressure (CoP) complexity was calculated to indicate gait constraints. After the experiment, subjects were asked to give the best and the worst oscillation pattern based on their walking experience. The oscillation frequency and amplitude had strong positive correlations with vection strength. The M-L CoP complexity was reduced under oscillations with low frequency. The medium oscillation amplitude had greater M-L CoP complexity than the small and large amplitude. Besides, subjects preferred those oscillation patterns with large gait complexity. We suggested that the oscillation amplitude with largest M-L CoP complexity should first be chosen to reduce gait constraints. Then, increasing the oscillation frequency to improve vection strength until individual preference or the boundary of motion sickness. These findings provide important guidelines to promote the sensation of natural walking in VE.

Moticon's Summary

This study explored how vertical viewpoint oscillations affect the illusion of self-motion (vection) and gait patterns when walking on a treadmill in a virtual environment. The OpenGo v2 insoles, with 16 pressure sensors and an inertial measurement unit, were used to measure mediolateral center of pressure (M-L CoP) to assess gait constraints. The study found that vection strength is positively correlated with oscillation frequency and amplitude, while lower frequency oscillations increase gait constraints.

Contact Us
Book a free online demo or use the contact form to get in touch
Newsletter
Subscribe to our newsletter for regular updates

Schedule an Online Demo

Get a hands-on overview of our products, find the best choice, discuss your application and ask questions.

30 minutes

Web conferencing details provided upon confirmation

You Would Like to Get in Touch?

Write us a message on product related questions or with regards to your application.  We are here to assist!


The form was sent successfully.

You will be contacted shortly.

Stay one step ahead!

Subscribe to our newsletter for the latest information on case studies, webinars, product updates and company news

Get Support

Check our FAQ database for answers to frequently asked questions

Describe your issue in as much detail as possible. Include screenshots or files if applicable.