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The analysis of gait patterns and plantar pressure distributions via insoles is

increasingly used to monitor patients and treatment progress, such as recovery

after surgeries. Despite the popularity of pedography, also known as

baropodography, characteristic effects of anthropometric and other individual

parameters on the trajectory of the stance phase curve of the gait cycle have not

been previously reported. We hypothesized characteristic changes of age, body

height, body weight, body mass index and handgrip strength on the plantar

pressure curve trajectory during gait in healthy participants. Thirty-seven

healthy women and men with an average age of 43.65 ± 17.59 years were

fitted with Moticon OpenGO insoles equipped with 16 pressure sensors each.

Data were recorded at a frequency of 100 Hz during walking at 4 km/h on a level

treadmill for 1 minute. Data were processed via a custom-made step detection

algorithm. The loading and unloading slopes as well as force extrema-based

parameters were computed and characteristic correlations with the targeted

parameters were identified via multiple linear regression analysis. Age showed

a negative correlation with the mean loading slope. Body height correlated with

Fmeanload and the loading slope. Body weight and the bodymass index correlated

with all analyzed parameters, except the loading slope. In addition, handgrip

strength correlated with changes in the second half of the stance phase and

did not affect the first half, which is likely due to stronger kick-off. However, only

up to 46% of the variability can be explained by age, body weight, height, body

mass index and hand grip strength. Thus, further factors must affect the trajectory

of the gait cycle curve that were not considered in the present analysis. In

conclusion, all analyzed measures affect the trajectory of the stance phase

curve. When analyzing insole data, it might be useful to correct for the factors

that were identified by using the regression coefficients presented in this paper.
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1 Introduction

The analysis of gait patterns and pressure distributions under

the feet via insoles is increasingly used to study specific questions in

the everyday lives of people, i.e., to analyze recovery after surgeries

(Braun et al., 2017) and to monitor training or health (Subramaniam

et al., 2022). Instrumented insoles have become more usable in

recent years, as several technical issues could be resolved. These

include durability, usability, calibration, hysteresis and drift, limited

battery life and data storage capacity, and related to that, the

restriction to low sample frequencies that are associated with

higher error rates (North et al., 2012; Elstub et al., 2022;

Subramaniam et al., 2022). Currently, the usability is still limited

by the complexities of data analysis and the need for advanced

algorithms and tools to be able to drawmeaningful conclusions from

these data (Anderson et al., 2022; Chatzaki et al., 2022). For

machine-learning-based analyses, it is important to find

parameters that are known to have an effect on the stance phase

curve and could serve as input variables. This is why the authors

conducted the present study in the first place. In addition, one could

correct for such confounders when analyzing insole data.

Characteristic effects of anthropometric and other individual

parameters on the trajectory of the stance phase curve measured

by insoles have not been previously reported.

Known gait alterations typical for higher age include a more

cautious gait, reductions of the preferred walking speed, cadence,

step and stride length plus width, as well as increases in speed-

normalized cadence and gait speed variability (Herssens et al.,

2018; Niederer et al., 2021). The underlying causes include

physical performance declines in advancing age that are

associated with progressive losses of muscle mass, decreased

joint flexibility, declines in force- and power-generating

capacity, as well as age-related changes of the cardiovascular

system (Ganse and Degens, 2021). In obesity, the spatiotemporal

gait parameters, parameters of pedography and joint kinematics

differed compared with normal-weight matched control groups

(Choi et al., 2021; Pau et al., 2021). In detail, during walking

significantly greater peak pressure values were reported for the

front and rear of the foot in normal compared to obese people

(Choi et al., 2021). In addition, obese people had a lower gait

speed and stride length, shorter stance and swing phases, as well

as longer double support phases (Pau et al., 2021). The ankle,

knee and hip ranges of motion were smaller in the obese

compared to the non-obese (Pau et al., 2021). Compared to

obese people, people who are both, obese and old walked with

higher center of pressure (CoP) velocity, shorter stride, and spent

more time in the support phase (Maktouf et al., 2020). Known

gait changes associated with body height include negative

correlations of height with cadence (every 10 cm increase in

height decreased cadence by 5.6 steps/min), ankle velocity,

stride time and stride length (every 10 cm increase in height

extended the stride length by 5 cm) (Mikos et al., 2018). In a study

with 120 healthy subjects by Senden et al. (2012), together,

height, age and gender explained 51% of the variability in step

length, 41% of the variability in cadence, and 34% of the

variability in age. In addition, age and gender accounted for

34% of the variability in walking speed.

Muscle power is likely to influence the stance phase curve,

i.e., via more forceful movements and a stronger or weaker push-

off (Kim et al., 2022). Maximal voluntary contraction measurements

of the legs due to risks of re-injury and worsening are problematic in

patients with injuries or degenerative conditions of the lower

extremities. In clinical settings, handgrip strength measurements

are already widely established, also since they are much easier to

perform, and far less time-consuming than leg force measurements.

Handgrip strength varies substantially with sex, age and body height,

and it correlates with the remaining years of life (Scherbov et al.,

2022). Low handgrip strength and gait speed are associated with

cardiovascular mortality and markers of neurodegeneration

(Chainani et al., 2016; Jacob et al., 2022). It is known that stride

length at preferred walking speed correlates positively with muscle

mass, and the variance in the double support phase correlates with

muscle strength (Kim et al., 2022).

Apart from these known characteristic gait changes, it is

currently unknown how these factors affect the trajectory of the

stance-phase curve derived from plantar-pressure data. The

M-shaped curve of ground reaction forces during the stance

phase is defined by two maxima, one minimum, the loading and

unloading slope, as well as the force during defined periods (Larsen

et al., 2008). We hypothesized characteristic changes of age, body

height, body weight, body mass index (BMI) and handgrip strength

on the plantar pressure stance-phase curve trajectory in healthy

participants. In detail, we hypothesized higher forces and steeper

loading and unloading slopes in younger, stronger and taller people,

and in those with a higher body mass and body mass index.

2 Materials and methods

Ethical approval was obtained from the IRB of Saarland Medical

Board (Ärztekammer des Saarlandes, Germany, application number

30/21). The study is part of the project Smart Implants 2.0 –Weight-

bearing and Gait Observation for Early Monitoring of Fracture

Healing and Individualized Therapy after Trauma, funded by the

Werner Siemens Foundation. It is registered in the German Clinical

Trials Register (DRKS-ID: DRKS00025108).

2.1 Measurement protocol

Data were collected from healthy volunteers. The inclusion

criteria were the ability to walk on a treadmill, and age 18 years

and older. Exclusion criteria were immobility, previous injury of the

lower legs or pelvis, use of walking aids, inability to give consent,

pregnancy, and age under 18 years.

The healthy participants of both sexes (none of them identified as

diverse) were fitted with OpenGO insoles (Moticon GmbH, Munich,

Germany) matching their shoe size that were individually calibrated.
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Forces were recorded from both feet with one insole each.

Measurements were conducted in the record mode of the device

with a recording frequency of 100 Hz. Each insole is fitted with

16 pressure sensors. Raw data were exported for further analyses.

The participants walked on a level treadmill at 4 km/h (Mercury,

HP Cosmos, Nussdorf-Traunstein, Germany) for 1 minute, while

insole data were collected. The participants were asked to walk for

1 minute straight, and recording was only commenced when the

walking was already in progress to avoid bias by including altered

steps upon gait initiation. Age was calculated from the date of birth.

Body weight was measured with a Beurer MS 50 scale. Body height was

measured with a Seca 206 roll-up measuring tape with wall attachment

(Seca, Hamburg, Germany). Handgrip strength was measured with a

hand dynamometer (Kern MAP 130K1, Kern, Balingen, Germany) by

asking the participant while standing to hold the device in the dominant

handwith the elbow extended and the armhanging down (Ireland et al.,

2014; Xu et al., 2021; Chen et al., 2022). Participants were asked to

perform three maximal contractions with breaks, and the highest of the

three values was chosen for statistical analysis. Handgrip strength is

reported in kg. Of note, handgrip strength measured while standing

with the elbow fully extended is greater than that measured while sitting

(Xu et al., 2021).

2.2 Data management

The data obtained by the 16 force sensors in the insole devices were

aggregated by the inbuilt data processing units and exported as

described previously (Braun et al., 2015; Stöggl and Martiner, 2017).

In detail, the pressure readings of the individual force sensors present in

the insole device yield a weighted sum as the total vertical ground

reaction force reading. Every summand is weighted by its sensor area (to

compute the force) and a respective scaling factor accounting for the

sensor’s surrounding area, as well as gaps between sensors, which also

depend on the insole size. This process is conducted by the Moticon

software as an automated processing step before the file export takes

place. The raw data acquired by the devices were transferred to desktop

computers and converted into csv-formatted ASCII-files. The resulting

files were then loaded into a custom-developed data platform for further

processing and parameter calculation.

2.3 Data processing

As a first processing step, stance phases of the gait cycles were

identified and extracted from the time-series data (step detection). For

this, any activity with consecutive force readings above 30N was

considered. We applied a tolerance of up to three missing values

due to possible recording device faults and discarded any activity

with a duration of less than 300 ms or more than 2000 ms. To

allow for inter-subject comparability of the derived gait parameters,

normalization is required. Since the parameters presented in this

publication are based on total force (force extrema and averages), as

well as force over time (slope -based parameters), this applies to both the

force and time axes. Force readings were transformed from Newton to

proportion of body weight of the respective subject. It should be noted

that since ground reaction force was measured instead of weight, due to

acceleration, this value regularly exceeds the body weight for peak load

bearing instances. Normalizing the time axis requires a more complex

approach, as lack of a fixed cadence results in varying step activity

lengths and thus amounts of true measurements for each step. Hence, a

natural cubic spline interpolation was conducted on the original raw

data. Based on the resulting curve for each stance phase, 100 equidistant

samples were taken, yielding one (interpolated) force measurement

point for every 1% of overall stance phase length.

When compared with other conventional gait measuring tools,

such as sensor-equipped treadmills or ground-mounted force plates,

insole sensors feature a lower recording frequency and higher sensor

noise. Similar to the different gait phases, further parameters are usually

based on or derived from the characteristic local extrema (first and

second force peak, local minimum in between force peaks, which are

also considered parameters themselves); sensor jitter can cause the issue

of having multiple ambiguous candidates for those extrema. To remedy

this problem, a Gaussian filter was applied to the original raw data while

repeating the normalization process. This filtering strategy with the

corresponding parameters (Sigma = 3, kernel size 7) prioritized the

elimination of extrema ambiguity at the expense of signal precision,

which can result in overcorrection in areas where a higher signal

volatility is to be naturally expected (e.g., at the start and end of the

stance phase). Therefore, in order to avoid losing high-frequency detail,

the filtered and normalized curve was only used to determine

unambiguous time-axis positions (indices) for the extremum

candidates; those indices were then re-applied to the non-filtered,

normalized data to yield the corresponding ground reaction force

measurement closer to the original raw data. For cases in which

using the filtered data still yielded inconclusive extremum

candidates, additional detection strategies were applied in the

following order: (a) Time plausibility: Extremum candidates

occurring within the first or last 10 indices (first/last 10% of overall

time span) are eliminated. (b) Max/Min-pool filtering: Should multiple

extremum candidates occur within a pool size of five indices (equals to

5% of overall time span), choose candidate with highest/lowest force

value. (c) Monotony-check: In case of multiple extremum candidates

remaining, eliminate those candidates from which the curve does not

display a strict monotonous decrease/increase in both directions within

five indices each. (d) Monotony grace: In case monotony-check has

eliminated too many candidates (less than twomaximum candidates or

less than one minimum candidate remaining), reinstate eliminated

candidates in descending order of their highest achieved monotony

distance until the target number of candidates is reached.

Every stance activity with an irregular amount of

unambiguous extremum candidates remaining after the

application of those strategies in the context of step detection

was considered a non-step event, and thus removed from the

dataset. In total, an average of 96.51 stance phase curves were

extracted per participant, out of which an average of 7.35 had the

additional extremum elimination strategies applied, as outlined

above. An average of 14.86 events per participant had to be

excluded over the entire experiment.

2.4 Parameters of the stance phase curve

Figure 1 shows the analyzed parameters of the stance phase

curve, which we computed for each step after applying the pre-

processing procedure as described (Larsen et al., 2008; Stöggl and
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Martiner, 2017). In detail, the underlying curves for parameter

extraction were not filtered, but are instead a product of the

normalization process described in 2.3. Since the time-

normalization in most cases produces more interpolated data

points than the raw data provides, this can cause a smoothing

effect similar to filtering. All curves were time-normalized to yield

100 force data points. The average was calculated by the mean of

every data point at the same time index, respectively (0–99), which

again produces a curve with 100 averaged force data points. All

stance phase curves were extracted for each participant across the

minute of walking. Mean forces were acquired using the arithmetic

mean of all force values in a defined section given as proportions of

body weight. Descriptions of all parameters are shown in Table 1.

2.5 Statistical analyses

All statistical tests were executed with IBM SPSS Statistics

version 29 (IBM SPSS Statistics, Armonk, NY, United States).

Normal distribution of data was tested by the Kolmogorov-

Smirnov and Shapiro-Wilk tests. Significance was defined as

p < 0.05. Multiple linear regression analyses were conducted with

forced entry for each of the nine parameters of the stance phase

trajectory separate (Figure 1; Table 1) as the dependent variable.

Forced entry was chosen, as the number of independent variables is

low and all variables have an explainable influence (Kucuk et al.,

2016). The relationships of each of these parameters with age,

weight, BMI, body height and handgrip strength as independent

variables were explored. As body height, body weight and BMI

intercorrelate, they could not be entered in the same model. Instead,

two separate models were run, the main one including body weight

and height, and a second one with BMI instead of body weight and

height, but otherwise identical. Data visualization was conducted

using the Matplotlib in Python. Due to lack of comparable data in

the literature, the authors could not run an a priori sample size

calculation. The sample size of 37 was an estimate based on what is

common in the field, and taking into account the aim to measure a

very diverse group of volunteers.

3 Results

A total of 37 participants (18 women and 19 men) with an

average age of 43.65 ± 17.59 years were included in the study (for

participant characteristics see Table 2). All models were significant,

whichmeans all models could be used. Table 3 shows the adjusted R2

values and non-standardized and standardized (Beta) regression

coefficients for all parameters. Figure 2 serves to illustrate differences

in the trajectory of the insole-derived stance phase curve for younger

and older, taller and shorter, heavier and lighter people, as well as

those with a lower and higher handgrip strength.

3.1 Age

The only parameter of the stance phase curve that showed a

significant negative correlation with age was the mean loading slope

(p = 0.014). Younger participants had higher loading slope values,

indicating a steeper increase. All other analyzed parameters were

independent of age.

FIGURE 1

The plantar pressure gait curve with the determined parameters.

TABLE 1 Parameter definitions and units.

Parameter name Definition Unit

Fmeanstance Mean force over the entire stance phase % body weight

Fmeanload Mean force between start of loading-phase and Fz2 % body weight

Fmeanmid Mean force between Fz2 and Fz4 % body weight

Fmeanunload Mean force between Fz4 and the end of the unloading-phase % body weight

Fz2 First force maximum marking the end of the loading-phase % body weight

Fz3 Force minimum during the mid-phase between Fz2 and Fz4 % body weight

Fz4 Second force maximum marking the end of mid-phase and beginning of unloading-phase % body weight

Loading slope Slope of the line between the start of the loading-phase and the first force reading equal or higher than 80%
of Fz2

% body weight/% stance phase
duration

Unloading slope Slope of the line between the first force reading in the unloading-phase below 80% of Fz4 and the end of the
stance phase event

% body weight/% stance phase
duration
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3.2 Body height

The body height correlated negatively with Fmeanload (p =

0.046) and the loading slope (p = 0.023). All other analyzed

parameters were independent of body height.

3.3 Body weight and BMI

The body weight correlated with all the analyzed parameters of the

stance phase, except the loading slope (Fmeanstance: p < 0.001,

Fmeanload: p = 0.002, Fmeanmid: p = 0.002, Fmeanunload: p < 0.001,

Fz2: p= 0.002, Fz3: p= 0.007, Fz4: p< 0.001, unloading slope: p= 0.002).

Identical to the body weight, the BMI (separate model) also correlated

with all parameters, except the loading slope (Fmeanstance: p < 0.001,

Fmeanload: p = 0.005, Fmeanmid: p = 0.002, Fmeanunload: p = 0.002, Fz2:

p = 0.003, Fz3: p = 0.008, Fz4: p < 0.001, unloading slope: p = 0.002).

3.4 Handgrip strength

The handgrip strength correlated positively with the parameters

of the mid and unloading phase, Fmeanstance (p = 0.015), Fmeanmid

(p = 0.036), Fmeanunload (p = 0.012), Fz3 (p = 0.041), Fz4 (p = 0.015)

and the unloading slope (p = 0.032). There was no correlation with

Fmeanload, Fz2 and the loading slope, which are the parameters of

the early stance phase.

3.5 Variability

The adjusted R2 values shown in Table 3 indicate that only up to

46% of the variability in the analyzed parameters can be explained by

age, body weight, height, BMI and hand grip strength. Thus, further

factors must affect the trajectory of the gait cycle curve, that have not

been considered in the present analysis.

TABLE 2 Participant characteristics.

Total Women Men

N 37 18 19

Mean age [years] ± SD (range) 43.65 ± 17.59 (18–87) 38.35 ± 15.28 (23–65) 48.57 ± 18.49 (18–87)

Mean height [cm] ± SD (range) 173.70 ± 11.22 (157–203) 165.47 ± 6.03 (157–174) 181.23 ± 8.83 (163–103)

Mean weight [kg] ± SD (range) 79.81 ± 27.85 (43.9–170.8) 63.01 ± 13.42 (43.9–78.9) 96.67 ± 32.71 (63.4–170.8)

Mean BMI [kg/m2] ± SD (range) 22.78 ± 7.04 (13.81–45.63) 19.03 ± 3.98 (13.81–27.66) 26.56 ± 8.49 (18.11–45.63)

Mean handgrip force [kg] ± SD (range) 35.41 ± 12.46 (19.6–68.7) 26.14 ± 4.60 (19.6–38.0) 43.30 ± 11.59 (21.0–68.7)

TABLE 3 Adjusted R
2 values of the main model that includes body weight and height, and of the model that includes BMI instead. In addition, non-standardized

and standardized (Beta) coefficients of the computed parameters are shown, if significant, separated by a comma. The values shown for BMI are derived from the

BMI model, the others from the main model. Units are either kg, cm, or years per percent body weight, or in case of slope kg, cm or years per percent body weight

per percent stance phase duration. The non-standardized coefficients can be used to correct for age, height, weight, BMI and handgrip strength when analysing

such data.

Adjusted R
2

(main model)
Adjusted R

2

(BMI model)
Age [years] Body

height [cm]
Body
weight [kg]

BMI
[kg/m2]

Handgrip
strength [kg]

Fmeanstance [% body
weight]

0.400 0.365 −0.007, −0.882 −0.022, −0.761 0.120, 0.696

Fmeanload [% body weight] 0.460 0.391 −0.008, −0.413 −0.005, −0.715 −0.018, −0.595

Fmeanmid [% body weight] 0.285 0.267 −0.007, −0.818 −0.026, −0.716 0.130, 0.652

Fmeanunload [% body
weight]

0.335 0.338 −0.006, −0.946 −0.019, −0.831 0.010, 0.764

Fz2 [% body weight] 0.376 0.350 −0.008, −0.748 −0.028, −0.646

Fz3 [% body weight] 0.199 0.182 −0.006, −0.734 −0.020, −0.646 0.012, 0.672

Fz4 [% body weight] 0.282 0.278 −0.010, −0.899 −0.035, −0.790 0.019, 0.763

Loading slope [% body
weight/% stance phase
duration]

0.292 0.177 −0.067, −0.394 −0.145, −0.543

Unloading slope [% body
weight/% stance phase
duration]

0.264 0.255 0.083, 0.835 0.283, 0.723 −0.150, −0.677
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4 Discussion

In summary, the present study demonstrated influences of age,

body height, body weight, body mass index and handgrip force with

parameters derived from the trajectory of the stance phase curve in

healthy participants. However, only up to 46% of the variability in the

analyzed parameters can be explained by age, body weight, height, BMI

and hand grip strength. Thus, further factors affect the trajectory of the

gait cycle curve, that have not been considered in the present analysis.

When analyzing insole data, it might be useful to use the identified

factors as input for machine-learning algorithms, or to correct for them

by using the regression coefficients presented in this paper.

Pressure insoles are increasingly used to study gait in patients, as

well as for lifestyle and health monitoring (Braun et al., 2017;

Subramaniam et al., 2022). In addition to continuous

measurements with insoles in patients with injuries, insoles are

used in neurological patients for home-based treatment monitoring

and as a rehabilitation tool for neuro-impaired gait, such as in

Parkinson’s disease (Sica et al., 2021; Das et al., 2022). Such long-

term monitoring, especially if combined with further sensors, may

produce large amounts of data that require automated analyses.

Among the possibilities is the use of machine-learning algorithms

trained with annotated data for pattern recognition of which

activities a person is performing or has been able to perform

(Harris et al., 2022). Such algorithms could be trained to

recognize not only level walking and running, but also activities

such as climbing stairs, cycling, driving a car, riding a train or bus,

indicate falls and events with excessive loads, and quantify the

overall time a person has been active. In addition, prediction

algorithms could be implemented for falls and diseases. Machine-

learning algorithms are already in use for many applications in gait

analyses, including spatiotemporal human gait recognition (Harris

et al., 2022; Konz et al., 2022). Such analyses in real time open up the

possibility to deliver patient feedback, including warning of

excessive forces and movements, as well as to remind patients

that it is time to get up and exercise (Zheng and Chen, 2017).

The inherent limitations in computing power of small wearable

devices are increasingly targeted by both algorithmic optimization

techniques in machine-learning like reservoir computing, network

pruning, dimensionality reduction and so on, as well as hardware

innovations. Together, these advances will ultimately allow real-time

feedback based on data from various sources combined in the near

future (Chiasson-Poirier et al., 2022; Zhang et al., 2022).

Alternatively, extracting decision making systems (symbolic

artificial intelligence), such as threshold-based methods, might

offer an immediate route to real-time feedback.

FIGURE 2

Characteristic differences in the stance phase curve. This figure is independent of the multiple regression analysis purely for illustration purposes.

Pooled data of 18 out of 37 participants in each group are shown comparing the 18 (A) oldest and youngest participants, (B) tallest and smallest

participants, (C) with the highest and lowest body mass, and (D) those with the highest and lowest handgrip strength. The solid lines indicate the mean.

The 95% confidence intervals are shown in orange and blue, while the overlap shows up in brown. Higher normalized force values (in % body weight)

can be observed in the younger and shorter participants with a lower body mass and handgrip strength.
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As shown in the present study, individual characteristics of gait

should be taken into account when analyzing continuous gait data in

the field and daily life, and especially when deriving advice and

warnings or alarms from these data. The present study revealed that

the loading slope decreased with increasing age. This finding is novel,

but in line with previous studies that showed amore cautious gait (more

focus on gait combined with a slower walking speed) as well as age-

related reductions of the preferred walking speed, and cadence

(Herssens et al., 2018; Niederer et al., 2021). The more cautious gait

in the present study is reflected in the slower loading of the foot, while

the force maxima did not change with age. Larsen et al. (2008) showed

that elderly compared to young participants had elevated muscular

coactivation along with greater electromyographic activation when

walking stairs, which illustrated the more cautious gait. Interestingly,

in a different study, in participants 70 years and older, the center ofmass

push-off power was shown to be significantly decreased (Sloot et al.,

2021). This effect did not show up in the present study, likely as the

average participant age was relatively low. The finding, however,

matches the increasing decline in performance with age that

accelerates from the age of around 70 years onward (Ganse et al.,

2020; Ganse et al., 2021). It should thus be assumed that the force

maxima of the plantar pressure stance phase curvemight decrease in the

oldest-old, and particularly the secondmaximum that reflects the push-

off force.

The body height affected Fmeanload and the loading slope, and

thereby delivered a characteristic change in the curve trajectory. This

finding is not surprising, as devices are usually calibrated to body

weight, but not to body height. Known changes in gait characteristics in

taller participants include lower cadence due to longer steps, lower ankle

velocity due to fewer steps, and increased stride time and stride length

(Mikos et al., 2018). Taller people with longer legs often prefer higher

walking speeds than smaller people. Walking speed has been shown to

impact spatio-temporal gait parameters, and the perception of what the

most comfortable walking speed is certainly varies among individuals

(Andriacchi et al., 1977; Kirtley et al., 1985). The walking speed of 4 km/

h, however, that was used in the present study, is usually in the range of

what healthy participants consider comfortable. In patients with

walking impairments, however, 4 km/h might be too fast, and

slower speeds should be selected when studying gait (Linder et al.,

2022; Zhu et al., 2022).

The body weight and BMI both had an influence on all the

analyzed parameters of the stance phase curve, except the loading

slope. The latter is an interesting detail, since age only affected the

loading slope, which allows to determine the influence of weight/

BMI independent from the effect of age.

The handgrip strength affected the mean force values of the later

stance phase curve, the minimum and the push-off force (second

maximum), as well as the unloading slope. There was, however, no

effect on the average force of the initial phase, the first maximum

and the loading slope. This very clear picture shows that the

handgrip strength correlates only with the second half of the

stance phase curve, while it leaves the first half unaffected. The

underlying cause is likely the muscle force available for push-off, that

is usually stronger in individuals who also have more handgrip

strength. The hip abductors and adductors contribute the most

muscle power in adult normal walking and are thus the muscles that

would need to be studiedmore closely in future studies that deal with

correlations of muscle strength and gait (Bogey and Barnes, 2017).

In future studies, also further parameters should be assessed that

may affect the stance phase curve to enable for advanced analyses in the

daily life. These may include the shoe and surface type, as well as a

variety of characteristic activities. In addition, children and people aged

70 years and older should be studied. It is currently unknown how

different injury types and degenerative musculoskeletal conditions

affect the gait cycle curve, such as bone fractures, ligament injuries

or arthritis of the legs. In case characteristic differences can be found

among injury types, analyses of the stance phase curve may even have

diagnostic and potentially even predictive value.

The main limitation of the study is that the effect of walking

speed was not considered, as only one pre-defined walking speed

was used for the measurements. Another limitation is that the data

were recorded on a treadmill that is known to differ from walking on

a ramp or on normal ground (Strutzenberger et al., 2022). The setup

and walking speed were chosen to get the best standardization

possible. In addition, differences in the pressure distribution

under the feed via the 16 sensors were not analyzed per sensor

in the present study and could be assessed in the future. Of note, the

parameters analyzed in the present study can only be used when a

regular gait curve is present. If this is not the case, other methods

need to be applied, i.e., machine-learning or the analysis of other

parameters, including possibly slopes and averages.

5 Conclusion

Age, body height, body weight, body mass index and handgrip

force affect the trajectory of the stance phase curve in characteristic

ways, but only explain up to 46% of the variability. When analyzing

insole and ground-reaction-force data, it might be useful to correct

for such factors, especially in automated data analyses via wearables,

when the data are analyzed to give warnings and deliver live

feedback. Smart healthcare applications that use insole data could

help to improve patient health and facilitate treatment after injuries.
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