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Abstract: The use of inertial measurement units (IMUs) to compute gait outputs, such as the 3D

lower-limb kinematics is of huge potential, but no consensus on the procedures and algorithms exists.

This study aimed at evaluating the validity of a 7-IMUs system against the optoelectronic system.

Ten asymptomatic subjects were included. They wore IMUs on their feet, shanks, thighs and pelvis.

The IMUs were embedded in clusters with reflective markers. Reference kinematics was computed

from anatomical markers. Gait kinematics was obtained from accelerometer and gyroscope data

after sensor orientation estimation and sensor-to-segment (S2S) calibration steps. The S2S calibration

steps were also applied to the cluster data. IMU-based and cluster-based kinematics were compared

to the reference through root mean square errors (RMSEs), centered RMSEs (after mean removal),

correlation coefficients (CCs) and differences in amplitude. The mean RMSE and centered RMSE

were, respectively, 7.5◦ and 4.0◦ for IMU-kinematics, and 7.9◦ and 3.8◦ for cluster-kinematics. Very

good CCs were found in the sagittal plane for both IMUs and cluster-based kinematics at the hip,

knee and ankle levels (CCs > 0.85). The overall mean amplitude difference was about 7◦. These

results reflected good accordance in our system with the reference, especially in the sagittal plane,

but the presence of offsets requires caution for clinical use.

Keywords: inertial measurement units; gait kinematics; lower limbs; tridimensional kinematics;

clinical gait analysis

1. Introduction

The use of wearable sensors, such as inertial sensors, for ecological and autonomous
gait analysis arouses important interest in the scientific community. Their low cost, small
size, ease of use and increased performance in terms of battery life and memory are, indeed,
highly suitable for gait monitoring outside of conventional cutting-edge laboratories. This
technology accessibility could particularly benefit patients who currently have no easy
access to conventional 3D gait analysis.

Accelerometers and gyroscopes are the most commonly used inertial measurement
units (IMU) in human motion analysis and physical activity monitoring [1]. They, re-
spectively, sense linear acceleration along one or several axes and angular velocity about
one or several axes. The difficulties in using IMUs to compute orientation are, first, the
poor estimations in terms of accuracy or robustness due to various sources of error [2]
and, second, the fact that they sense data in their local frame. The first difficulty refers
to the inherent property of each type of sensor. Accelerometers are, indeed, not suitable
to estimate orientation during dynamic tasks since they measure the gravitational accel-
eration in addition to actual accelerations due to movement. In addition, gyroscopes are
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not suitable for orientation estimation over a long time period since they contain noise
and bias that cause cumulative error when the signal is integrated [3]. Magnetometers,
which sense the magnetic field, are often combined with IMUs in order to estimate the yaw
angle (heading). However, magnetometer sensors also suffer from inaccuracies due to field
distortion in the presence of ferrous materials during the measurement [2], i.e., in every
environment surrounded by electrical devices and, implicitly, in all gait laboratories. Sensor
fusion algorithms (SFA) have, therefore, been developed to achieve the best orientation
estimation, taking advantage of a smart sensor combination and leaving aside the less
accurate information along the measure. To overcome the second issue and estimate the
segment frames from the local sensor frames, sensor-to-segment (S2S) calibration steps
are necessary. Numerous calibration methods have been proposed, as shown by two re-
cently published reviews, including 54 and 112 articles, describing S2S methods for motion
analysis [4,5]. Both reviews concluded that the studies cannot be compared as they all use
different methods of calibration. Thus, in the absence of consensus regarding SFA and S2S
calibration, each method using IMU for kinematics computation needs to be cautiously
detailed and validated before its use in clinical applications.

Numerous studies have investigated the validity of inertial sensors to compute lower-
limb kinematics. Two recent systematic reviews reviewed 39 and 14 studies reporting
validity metrics on 3D kinematics during simple (movements performed only in one plane
of movement) and complex movement, such as walking [6,7]. The root mean square
errors (RMSE) and correlation coefficients (CC) were shown to vary greatly across the
studies (hip: RMSE [0.2–9.3]◦, CC [0.53–1.00]; knee: RMSE [0.7–11.5]◦, CC [0.4–1.00]; ankle:
RMSE [0.4–18.8]◦, CC [0.33–0.99], in 3D [6,7]). The studies mostly agreed that kinematics
generally demonstrated good validity in the sagittal and frontal planes but were limited in
the transverse plane. These observations are often drawn from small and heterogeneous
studies [7] and need to be further documented.

The aim of this study was to assess the concurrent validity of a new IMU-based 3D
lower-limb kinematics computation method on a healthy population against the silver
clinical standard: the optoelectronic system with markers on anatomical landmarks. The
computation method was also tested on optoelectronic data from clusters of markers, in
order to separate the SFA and S2S sources of errors.

To be incorporated into clinical practice, new IMU-based gait analysis systems must
report in similar form to be accepted clinical concepts [8]. This is not the case for a large
majority of existing studies, which focused solely on one joint or one plane. Furthermore,
some systems rely on S2S calibration tasks (such as functional tasks [9] or pointing tasks [10])
for every single segment axis to determine which considerably increase the time needed
and the difficulty to perform the whole measurement procedure. The proposed method
was, thus, thought to be suitable for pathological subjects and clinical settings, keeping the
number and the difficulty of the instructed tasks as low as possible, providing the same
kinematic outputs as commonly provided by conventional gait analysis [11]. Thus, pelvis
and foot kinematics was assessed in addition to hip, knee and ankle kinematics. Finally,
our method relied only on accelerometers and gyroscope to avoid any supplementary
difficulties for the experimenter to deal with, such as magnetic environment preparation.

2. Materials and Methods

2.1. Participants

Ten healthy and asymptomatic adults were recruited. They were included if they
were willing to participate and if they provided informed consent. They were excluded
if they had muscular or skeletal pain or any disease significantly influencing gait, if they
underwent surgery in the last 12 months, if they were pregnant and if they had a known
allergy to hypoallergenic adhesive tape. The protocol was approved by and carried out in
accordance with the hospital’s institutional ethical committee.

The sample size calculation was performed using the means and standard devia-
tions of the RMSE reported in two validation studies on healthy subjects [12,13] evalu-
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ating the 9 following outcomes: hip, knee and ankle angles in flexion/extension, abduc-
tion/adduction and internal/external rotations, between an IMU system and an optoelec-
tronic reference system. The sample size was calculated for each outcome and each study
using the G*Power software, fixing the power to 0.95 and α to 0.05. The maximal sample
size computed, among all outcomes extracted from the 2 reference studies assessing healthy
subjects, was 9. An extra subject was added for security (margin to assure the completion
of each subgroup).

2.2. Equipment

Figure 1 shows the equipment set on all study participants. Participants were simulta-
neously measured by a 7-IMUs (Physilog6S, GaitUp, Renens, Switzerland) inertial system
and a twelve-camera (Oqus7+) optoelectronic system (Qualisys, Göteborg, Sweden). The
IMUs were inserted into 4-marker clusters (Figure 1) in order to track the position and
orientation of the IMU in the global laboratory frame. The IMUs were positioned on the
lower back (at sacrum level, in the middle and below the posterior superior iliac spines),
the thighs (on the lateral side), the shanks (on the anterior and medial side) and the feet (on
the top) (Figure 1). These locations were chosen as they are supposed to provide limited
soft tissue artifacts [14]. Double-sided adhesive tape and elastic bands (SuperWrap straps,
Qualisys, Göteborg, Sweden) were used to firmly fix the clusters and the IMUs on the
participant’s body (Figure 1). The tridimensional acceleration and angular velocity were
acquired at 256 Hz, with ranges of ±16 g and ±2000 ◦/s respectively. Reflective markers
were placed according to the Conventional Gait Model (CGM) 1.0 [15] with the addition
of two markers on the first metatarsal heads to help deal with any confusion between the
‘TOE’ marker and the cluster markers (Figure 1). Marker trajectories were measured at
100 Hz.

accordance with the hospital’s institutional ethical committee.

G*Power software, fixing the power to 0.95 and α to 0.05. The maximal sample size com-

IMUs on the participant’s body (Figure 1). The tridimensional acceleration and ang

between the ‘TOE’ marker and the cluster markers (Figure 1). Marker trajectories were 

Figure 1. Equipment including 7 inertial sensors (Physilog6S, GaitUp) and reflective markers on the

clusters and body landmarks (Conventional Gait Model 1.0).

As shown in Figure 1, participants also wore pressure insoles (Moticon, Munich,
Germany) fixed to light sandals and an IMU on the thorax fixed with a GoPro harness
(GoPro, San Mateo, CA, USA). This was for the need of another project. Insoles and upper-
body inertial data were not analyzed in this study. In addition, the high IMU sampling
frequency was chosen to enable the acquisition of higher velocity tasks such as sprinting
tasks, which were not used in the current study. The whole dataset including marker
trajectories, IMU data, and insoles data is available online (Grouvel G. 2022. Human gait
and other movements—markers/inertial sensors/pressure insoles/force plates; Yareta;
https://doi.org/10.26037/yareta:kavwr4mzwzcjzepd6gp4cpkdz4).

https://doi.org/10.26037/yareta:kavwr4mzwzcjzepd6gp4cpkdz4
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2.3. Protocol

At the beginning and at the end of the measurement session, a trial involving the
simultaneous acquisition of acceleration of one Physilog and the trajectory of one reflective
marker, both fixed on a wand that felt down on the ground with a jerk movement was
performed. These trials served as system synchronization trials and are referred to as sync
trials in the rest of the paper.

Each participant was asked to stand still in a neutral pose with the legs as vertical
as possible and parallel feet, then to sit on a stool with the legs extended, pelvis inclined
and toes off the ground (Figure 2), and finally to walk back and forth along the 10 m
walkway at spontaneous speed. A minimum of 8 walking trials were assessed and analyzed
per participant.

—

cluster’s coordinate system was defined based on three markers and was con-
verted into quaternions to obtain the cluster’s orientation varying in time. The sensor 
sion proposed by Madgwick et al. was used to compute the sensors’ orientations (R

→ → → →

Figure 2. Tasks included in the protocol. (1) upright standing, (2) sitting with legs extended and

(3) walking. IMUs are symbolized by the red boxes.

2.4. Data Processing

Data processing was performed using Matlab R2019 software (Mathworks, Natick,
MA, USA). The main steps are presented in Figure 3.

 

determining a rotation between the actual sensor frame and the desired segment’s frame 
→

Alignment with gravity: During the first calibration standing posture, the segment’s 

Alignment with the segment’s 
feet, shanks and thighs’ mediolateral axis was determined by the principal axis of the 

’

Figure 3. Flowchart of the experimental procedure and data processing main steps.
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2.4.1. Pre-Processing

The absolute time of each Qualisys trial and the time of the impact captured during
the sync trials were used to synchronize the optoelectronic and inertial systems and cut the
inertial data into separated trials. The gaps in the marker trajectories were automatically
filled using information of inter-correlated markers obtained from a principal component
analysis [16]. The gait events were computed from the feet and pelvis marker trajectories
as proposed by Zeni et al. [17].

2.4.2. Sensor Orientations

Each cluster’s coordinate system was defined based on three markers and was con-
verted into quaternions to obtain the cluster’s orientation varying in time. The sen-
sor fusion proposed by Madgwick et al. was used to compute the sensors’ orienta-
tions (RPelvis sensor→IF

p
, RThigh sensor→IF

t
, RShank sensor→IF

s
, RFoot sensor→IF

f, with IFi: initial
frame of the sensor i) from accelerations and angular velocities [18], with the follow-
ing fine-tuned parameters: sample period = raw IMU recording sample period, initial
quaternion = rotation to gravity estimated with the five first accelerometer samples, and
beta (algorithm gain) = 0.1.

2.4.3. Sensor-to-Segment (S2S) Calibration

The following 3 steps for S2S calibration were proposed. Each of them consisted of
determining a rotation between the actual sensor frame and the desired segment’s frame
(Rj sensor→j segment, with j: pelvis, thigh, shank or foot). The orientations computed from the
clusters underwent the same rotations in order to check the relevance of the calibration
performed on each sensor.

1. Alignment with gravity: During the first calibration standing posture, the segment’s
vertical axis (Z) is supposed to be aligned with gravity measured by the accelerom-
eter. A rotation was applied to the sensor data to align the vertical axis of the sen-
sor with the vertical axis of the segment. This rotation was also applied to the
cluster-based quaternions.

2. Alignment with the segment’s mediolateral (Y) axis: During the walking trials, the
feet, shanks and thighs’ mediolateral axis was determined by the principal axis of
the measured angular velocity, supposing that the movement occurs mainly in the
sagittal plane for these segments. A rotation was applied to the corresponding sensor
data to align the mediolateral axis of the sensor with the principal axis of movement
during gait. This same rotation was applied to the cluster-based quaternions. The
mediolateral axis of the pelvis was supposed to be manually aligned with the medio-
lateral axis of the sensor since no assumption could be made on the principal axis of
movement during gait for this segment.

3. Mediolateral axis correction: The cross product of the 2 detected sensors’ vertical
axes during standing and sitting postures allows one to know the direction of the
mediolateral axis. The correction of the sign of the mediolateral axis previously
determined was applied on the sensor and cluster-based orientations if necessary.

Figure 4 illustrates the 3 first above-described S2S calibration steps on IMU and
cluster data.
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The desired segment’s orientations were

→ →

→ →

→ →

→ →

→ → →

→

standing posture, all sensors’ frames are forced

→

→

→

→

Figure 4. Illustrations of the S2S steps from the initial sensor frames to the segment frames in the

standing pose. (1) Z alignment (blue axis) thanks to the gravity measured by the accelerometers

during standing posture, (2) Y alignment (green axis) with the principal axis of movement measured

by the gyroscopes during gait, (3) Correction of the Y axis direction thanks to the acceleration

measured during the sitting posture leg extended.

The desired segment’s orientations were, thus, determined by Equation (1):

RPelvis segment->IF
p = RPelvis segment→Pelvis sensor/cluster * RPelvis sensor/cluster→IF

p,

RThigh segment->IF
t = RThigh segment→Thigh sensor/cluster * RThigh sensor/cluster→IF

t,

RShank segment->IF
s = RShank segment→Shank sensor/cluster * RShank sensor/cluster→IF

s,

RFoot segment->IF
f = RFoot segment→Foot sensor/cluster * RFoot sensor/cluster→IF

f,

(1)

2.4.4. Sensors Common Frame Setting

A common frame (CF) to all sensors (RPelvis segment→CF, RThigh segment→CF, RShank segment→CF,

RFoot segment→CF) was set (only for IMUs, not applied to cluster data) (Equation (2)). During the
standing posture, all sensors’ frames are forced to be aligned with the same azimuth axis (X).

RPelvis segment->CF = RPelvis segment->IF
p * RIF

p
→CF,

RThigh segment->CF = RThigh segment->IF
h * RIF

h
→CF,

RShank segment->CF = RShank segment->IF
s * RIF

s
→CF,

RFoot segment->CF = RFoot segment->IF
f * RIF

f
→CF,

(2)

2.4.5. Sensor-to-Global Calibration

The direction of travel was determined and the drift around the Z axis was corrected
(only for IMUs, not applied to cluster data). During the stance phase of gait, the X axis of the
segments was oriented along the direction of travel and corrected for each gait trial to set
a global frame (GF) to all sensors (RPelvis segment→GF, RThigh segment→GF, RShank segment→GF,

RFoot segment→GF) that aims to be aligned with the optoelectronic global frame. An additional
step is used as a drift compensation since the common frame (CF) tended to drift over time
(as represented by R CF

i
drifted→CF in Equation (3)).

RPelvis segment->GF = RPelvis segment->CF
p

drifted * R CF
p

drifted→CF * RCF→GF,

RThigh segment->GF = RThigh segment->CF
t
drifted * R CF

t
drifted→CF * RCF→GF,

RShank segment->GF = RShank segment->CF
s
drifted * R CF

s
drifted→CF * RCF→GF,

RFoot segment->GF = RFoot segment->CF
f
drifted * R CF

f
drifted→CF * RCF→GF,

(3)

Steps (2) and (3) were unnecessary for the clusters as all the segment orientations were
directly given with respect to the same optoelectronic global frame, instead of the relative
inertial frame IFi for the IMUs.
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2.4.6. Kinematics Computation and Cycle Division

From the determined segment frames, the joint kinematics were computed with Euler
rotations following CGM 1.0 [15] (Equation (4)), and the reference kinematic data were
computed using the same convention.

RHip = RPelvis segment→Thigh segment = RPelvis segment→GF * R−1
Thigh segment→GF,

RKnee = RThigh segment→Shank segment = RThigh segment→GF * R−1
Shank segment→GF,

RAnkle = RShank segment→Foot segment = RShank segment→GF * R−1
Foot segment→GF,

(4)

The pelvis kinematics was computed directly from RPelvis segment->GF and the foot kinematics
(used for the foot progression angle) was computed as follows: RFoot = RFoot segment→Pelvis segment =

RFoot segment→GF * R−1
Pelvis segment→GF.

It was estimated that our system synchronization showed an accuracy of about 1s.
Such time drifts appeared between the kinematic curves obtained from the reference and the
IMUs in the gait trial results and were corrected using a signal cross correlation. Resulting
kinematic data were then cut into gait cycles, using the events detected on the raw inertial
data as proposed by Mariani et al. [19] for the IMU data and using the events detected by
the previously described method from marker trajectories [17] for the clusters.

2.5. Data Analysis

Eleven kinematic variables per side were compared between the 3 approaches (refer-
ence kinematics from the anatomical markers, kinematics from the clusters, and kinematics
from the IMUs): pelvis ante/retroversion, pelvis obliquity, pelvis in/external rotations,
hip flex/extension, hip ab/adduction, hip in/external rotations, knee flex/extension, knee
ab/adduction, knee in/external rotations, ankle dorsi/plantar flexion and foot progression
angle. These outcomes were selected as they are of interest for clinical gait analysis [20].
The foot progression angle was defined as the angle between the pelvis antero-posterior
axis and the foot longitudinal axis. The kinematic data were represented according to the
gait cycle (%) and averaged for each participant.

The RMSE, RMSE centered at the mean (as proposed in [21]), the Pearson’s correlation
coefficient (CC) and the absolute difference in ranges of motion (∆ROM) were computed to
evaluate, respectively, the global accuracy, the accuracy without any offset, the shape of
the curves and the amplitudes of the curves. Altman’s guidelines were used to interpret
the correlations: poor, if CC < 0.20; fair, if 0.20 ≤ CC < 0.40; moderate, if 0.40 ≤ CC < 0.60;
good, if 0.60 ≤ CC < 0.80; and very good, if CC ≥ 0.80 [22].

3. Results

Among the 10 participants measured, one had a technical issue with the sensor
located on his left thigh, so his left-side results are missing. Six men and four women, age:
30.2 ± 6.7 years, height: 173.5 ± 6.8 cm, and mass: 68.0 ± 14.6 kg, were included in the
analysis. Ten to twelve gait trials were captured per participant.

Figure 5 illustrates the kinematic results from IMUs and clusters as mean curves and
standard deviation areas for the whole participants. The RMSE, RMSE centered at the mean,
CC and ∆ROM results regarding the IMU and cluster-based kinematics are presented in
Figures 6 and 7, respectively, and the associated tables are available as Supplementary
Material (Table S1). The overall mean RMSE is 7.5◦ for IMU-kinematics and 7.9◦ for
cluster-kinematics. The maximal errors were found at the pelvis ante/retroversion level
(RMSE = 14.1 ± 2.8◦ for IMUs and 12.1 ± 2.8◦ for clusters). After the offset removal, the
overall mean centered RMSE was 4.0◦ for IMU-kinematics and 3.8◦ for cluster-kinematics.
The highest errors were then found at the hip internal/external rotation level (centered
RMSE = 7.8 ± 1.3◦ for IMUs and 7.8 ± 1.4◦ for clusters). Regarding the curve shape
accordance, we found very good CCs in the sagittal plane for both IMUs and cluster-
based kinematics at the hip, knee and ankle levels. In addition, the hip ab/adduction,
pelvis int/external rotations and pelvis obliquity showed very good correlations. In the
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other planes, the IMU and cluster kinematics curve shapes showed poor to moderate
correlations with the reference. The mean amplitude differences (∆ROM) were 6.8◦ for
IMU-kinematics and 6.1◦ for cluster-kinematics. The maximal ROM difference concerned
the hip internal/external rotations with ∆ROM up to 27.2 ± 7.4◦ with IMUs and 25.9 ± 7.4◦

with clusters.

mean, CC and ΔROM results regarding the IMU and cluster

tions with the reference. The mean amplitude differences (ΔROM) were 6.8° for IMU

internal/external rotations with ΔROM up to 27.2 ± 7.4° with IMUs and 25.9 ± 7.4° with 

Mean kinematic curves (±standard deviation ‘sd’) of all participants’ right sides. In red: 
the reference (‘Ref’) kinematics from anatomical markers; in green: the kinematics obtained from 

(‘Opto’) system; in blue: detected from the IMUs located on the f

Figure 5. Mean kinematic curves (±standard deviation ‘sd’) of all participants’ right sides. In red: the

reference (‘Ref’) kinematics from anatomical markers; in green: the kinematics obtained from the

clusters; in blue: the kinematics obtained from the IMUs. The dashed lines correspond to the mean

toe off events detected, in red: detected from the anatomical markers with the optoelectronic (‘Opto’)

system; in blue: detected from the IMUs located on the feet.

Figure 6. Metrics (root mean square error (RMSE), RMSE centered at the mean, correlation coefficient

and difference in range of motion (ROM)) of validity evaluation of the method applied to the IMU data

against the optoelectronic reference. Histograms represent the mean values (and interval confidence

bars) for all participants, for each joint/segment and each plane.
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tensions (CC ≥ 0.85)

–

Figure 7. Metrics (root mean square error (RMSE), RMSE centered at the mean, correlation coefficient

and difference in range of motion (ROM)) of validity evaluation of the method applied to the cluster

data against the optoelectronic reference. Histograms represent the mean values (and interval

confidence bars) for all participants, for each joint/segment and each plane.

4. Discussion

This study aimed at assessing the validity of a 3D lower-limb kinematics computation
method based on IMUs on an asymptomatic population. The main results suggested
that our method was comparable to the optoelectronic system, chosen as silver clinical
standard. It ensured good global accuracy and accordance for the shape and the amplitude
of the curves, but some exceptions must be acknowledged. The overall mean RMSEs were
below 10◦, with the exception of pelvic ante/retroversion and foot progression angle. The
errors came essentially from an offset between the reference kinematics and the IMU-based
kinematics. The removal of this offset provided overall mean RMSEs below 8◦ for all joints
and planes. The kinematics of the sagittal plane showed better results with small errors
without offset (<6◦), very high correlations for the hip, knee and ankle flexion/extensions
(CC ≥ 0.85) and low amplitude differences (<7◦).

Although a lot of studies have already been published regarding gait kinematics from
IMUs, few studies evaluated the complete 3D kinematics of the entire lower limbs as it was
proposed in the current study. Studies often assessed one joint [9,23,24] or one plane [25–27].
The errors found in our study appeared higher than in other existing published methods.
Focusing on those who assessed 3D lower-limb kinematics, we can compare with the
following works. Lebleu et al. found errors varying between approximately 1◦ and 4◦ for
most joints, planes and functional calibration movements, similar to the ones proposed in
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the current study [28]. It is noteworthy that the authors included the pelvis kinematics, as
we did, since it is commonly presented in clinical gait analysis reports. They found errors
below 1.5 ± 1.8◦ for pelvis tilt, obliquity and rotation. Nazarahari et al. found errors below
8.1◦ for ankle and knee angles in 3D [29]. In these two examples, the reference kinematics
is based on markers located on the IMU boxes or associated clusters, which is the case
for a large part of the studies in the current literature. Thus, the resulting kinematics
is different from the clinical reference using markers located on anatomical landmarks.
Indeed, the kinematics from IMUs is logically closer to cluster-based kinematics than
anatomical-marker-based kinematics due to the same soft tissue artefacts. This has actually
been verified by Teufl et al. who found significant different errors between the two above-
mentioned reference kinematics and his IMU method (errors below 2.4◦ against cluster-
based reference kinematics and below 6◦ against anatomical markers-based kinematics) [30].
For those who used anatomical-marker-based kinematics, the errors are closer to the ones
presented in our study. Tadano et al. found errors between 7.8◦ and 10.1◦ for hip, knee and
ankle flexion/extensions, using a combination of functional calibrations and additional
pictures to perform S2S alignment [31]. Cho et al. managed to obtain lower errors (<4.4◦)
for hip, knee and ankle 3D kinematics with the use of a magnetometer, in addition to
accelerometer and gyroscope, but very little information is available regarding the S2S
alignment [32].

Our method was, indeed, solely based on accelerometer and gyroscope data. This
choice was made to reduce the uncertainty of orientation estimation caused by magnetic
distortions [33] but represented a supplementary challenge. Omitting magnetometer
data, which serves as a global heading (horizontal) reference, entails the lack of a global
reference frame for our IMUs and the lack of drift diminution in the transversal plane [30].
We, thus, had to compensate for this absence with the estimation of a sensor common
frame and a sensor-to-global calibration. In general, magnetometer-free IMU systems
have been reported not only to be equivalent to IMU systems using magnetometers [34]
but, in some cases, to outperform them [30,33]. However, if particular care is taken in
the preparation of the magnetic environment, magnetometer-based algorithms perform
slightly better [35]. Given our perspective to further use our system in clinical conditions
and the huge advantages of omitting magnetometer in a user perspective, it was worth a
try. In any case, magnetometer-free systems are described as relevant for capturing data for
the short term [36].

The main issue with our method concerned the offset, i.e., the constant absolute angle
between the IMU kinematics and the reference kinematics. This was especially visible
on the pelvis ante/retroversion, with a mean absolute RMSE of 14.1 ± 2.8◦ and a mean
centered RMSE (removing the average mean of each curve) of 1.2 ± 0.3◦. Berner et al.
related very similar errors and tried to compensate them taking advantage of optical data
during calibration trials [37]. This adjustment permits one to considerably reduce the
overall errors (<5◦, except hip rotation). The problem with this proposition is the need
for an external device, which compromises the use of the gait analysis system outside of
standard laboratories. Pacher et al. proposed a calibration method for the pelvis based
on a combination of functional movements and the use of an external IMU fixed to a
device, the inclination of which coincides with the line between the superior iliac spines
(method inspired from Picerno et al. [10]) [38]. This combined method had the merit of
being independent of any optical system and allowed a reduction in the error but remained
superior to 10◦, so it may be improved.

The curve shapes resulting from our method showed good to very good agreement
with the reference, with the exceptions of foot progression angle (CC = 0.13), hip rotation
(CC = 0.36), knee ab/adduction (CC = 0.38) and rotation (CC = 0.19), as well as pelvis
tilt (CC = 0.25). These findings were in line with other studies [37,39]. In the frontal and
transverse planes, the movement amplitudes are indeed smaller, as compared to the sagittal
plane, resulting in low signal-to-noise ratios [40], which may explain low CCs. Very good
sagittal kinematics curve shapes agreement was also largely observed in the literature [6,7]
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and this is very satisfying, knowing that the angles in the sagittal plane are considered
as primary gait drivers [37] and, thus, highly consulted during the process of clinical
gait analysis.

The foot progression angle computed with our method had one of the highest errors
and lowest correlations with the clinical reference. Figure 5 illustrates the poor concordance
between the kinematic curves. This could be explained by a difference in the definitions
of these angles. In the CGM, the foot progression angle is defined as the angle between
the global coordinate system and the foot longitudinal axis [15]. However, this definition
was difficult to follow in our method using IMUs, given the lack of a global coordinate
system due to the absence of magnetometers. In fact, our global coordinate system was set
aligned with the direction of travel at each gait cycle. The foot progression angle, defined
as the angle between the foot longitudinal axis and the direction of travel, has been tested
from magneto-inertial sensors and showed satisfying results (RMSE < 3◦) [41,42], but in
our case, this was not stable enough. We, thus, chose to define the foot progression as the
angle between the pelvis anteroposterior axis and the foot longitudinal axis.

The comparison of IMU-based kinematics and cluster-based kinematics allowed us
to have an idea of the part of SFA and S2S in kinematics computation. RMSEs, centered-
RMSEs, CCs and ∆ROMs were very close in both methods, which means that SFA was
correctly implemented and provided accurate sensor orientations. The main differences
were observed at the ankle and foot level, where the cluster-based kinematics seemed
to have lower error and better shape accordance with the reference than the IMU-based
kinematics. We can, thus, infer that this came from SFA inaccuracies. Similar errors were
found in other studies at the ankle flexion/extension level, specifically at mid and terminal
swing phases [43,44]. This could be due to the abrupt difference in dynamics of the foot
between the stance and swing phases, as it is known that SFA highly depends on dynamics
of motion [2]. The sampling rate was found to have a great effect on Madgwick’s algorithm
performance in dynamic conditions [18]. To adapt the sampling rate could constitute an
axis of improvement for the method. This may also be caused by inaccuracies coming
from the sensors’ common frame setting and the sensor-to-global frame calibration. Indeed,
these two calibration steps were only performed on IMU data and not on cluster data, since
markers are already measured in the global frame. On one hand, if the participant had
the feet slightly rotated during the standing posture, the initial and common orientation
between the sensors may be incorrect. On the other hand, if the participant had the feet
slightly rotated during mid stance as compared to the direction of travel, the global frame
may also be incorrect. These aspects must be improved in future work.

The way of dealing with the error of orientation that accumulates over time (drift)
was satisfying. We constrained the segment orientations to be aligned with the direction of
travel while being in mid-stance phase and did not notice a growing drift in the kinematic
results. This was permitted thanks to the short and straight gait trials acquired. The
drift could not be compensated similarly for longer or curved measurements [45]. In
addition, particular attention will have to be paid when using this system with pathological
individuals whose body segments do not necessarily point toward the direction of travel
in stance phase (e.g., individuals walking in crouch gait with internally rotated hips and
in-turned feet [46]).

4.1. Study Limitations

The sensor gains and offsets were not changed as compared to the ones provided by
the constructor. However, we demonstrated that the kinematics computed from IMUs and
the kinematics computed from markers rigidly fixed to the IMU boxes were very similar.
Next, as mentioned previously, one strategy to set an initial common frame for all the
sensors was to define it while the participant was standing straight during the calibration
posture. This could have been performed by aligning the sensors on a specific device to
ensure true inter-alignment, such as proposed in various existing methods [37]. Another
limitation is that our S2S calibration method relies on the good segments’ alignment of the
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participant during standing and sitting postures, and the true segments’ principal rotation
along the mediolateral axis during walking. This may provide errors when assessing
pathological populations. Then, we must acknowledge that the sample size was low as
compared to similar concurrent validity studies. The addition of some participants as well
as some pathological individuals could be beneficial for a future study not only in order to
strengthen the current results but also to assess the clinical relevance of our system. Finally,
we did not assess the reliability of our method due to the heaviness of such a protocol,
which constitutes a relevant perspective as well.

4.2. Clinical Relevance

A new 7-IMU system composed of accelerometers, gyroscopes and associated SFA
and S2S algorithms was proposed in this work. Far from being the first of its kind, our
method found its novelty in providing complete 3D lower-limb kinematics, similar to
conventional gait analysis outcomes, with no need for an external device or high expertise
for data acquisition. The absolute errors in our system against the clinical reference were
globally too high to be used for clinical interpretations. McGinley et al. postulated that
absolute errors of a maximum of 5◦ were seen as clinically reasonable [47]. We did not reach
this objective. We believe that these errors can be caused by the inherent discrepancies in
kinematics definitions. The clinical conventions taken as reference here are based on joint
anatomical axes, whereas the IMU-based kinematics was rather built on functional axes.
In fact, the CGM was used as the reference in the current study since it is the most widely
used and understood biomechanical model for clinical gait analysis [15,20]. However, other
models exist [48,49] and could be considered to concur with IMU-based kinematics. As
previously discussed, models using clusters instead of anatomical markers (such as the
calibrated anatomical landmark technique ‘CAST’) may better agree with IMUs given the
resulting equivalent soft tissue artefacts. In addition, models using functional methods
to determine joint center locations [50] could also better match our IMU-based system
given the chosen S2S functional calibrations. Kinematics from IMUs may be comparable
between sessions for the same subject, as can be seen from the low inter-trial variabilities
and the excellent reliability reported in numerous studies [6]. When the offset is removed
from IMU-based kinematics, we moved closer from the objective of 5◦ of errors, at least in
the sagittal plane. This offset determination is a key improvement needed for our system.
Indeed, the simple S2S calibration proposed in the current study, based on only three
simple tasks asked to the participant, was not sufficient. Calibration procedures must be
undertaken very carefully. This can imply the necessity to use additional devices, such as a
video camera, an instrumented goniometer or additional IMUs, in order to eliminate the
offsets and reach higher accuracies.

In its current form, the algorithm permitted good estimation of the joint ROM as well
as the waveform, especially in the sagittal plane. If the system is to be used in a clinical
context, this information could be sufficient for some pathological cases, such as those with
light gait deviations (e.g., toe walkers, stroke survivors, patients with Parkinson’s disease
or multiple sclerosis). For instance, if the purpose of gait analysis is to confirm that an
Achilles tendon lengthening has permitted an increase in ankle dorsiflexion motion, the
system could be adapted. However, absolute angles and the description of the frontal and
transverse planes are, for instance, essential when dealing with patients with cerebral palsy
(with a high level of disability). As an example, clinicians who need to devise derotation
osteotomy could not rely on our system. Be that as it may, IMU systems do not seem ready
to substitute optoelectronic systems but could complement them.

5. Conclusions

A 7-IMU system, associated calibration tasks and algorithms were proposed to easily
compute 3D lower-limb kinematics from accelerometer and gyroscope data. This study
found that the resulting curve patterns were comparable to the clinical standard but the
absolute errors remained relatively high for clinical use outside of laboratories.
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