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A B S T R A C T

Accurate gait detection is crucial in utilizing the ample health information embedded in it. As 

an alternative of the laborious and demanding sensor-based detection, vision-based approaches 

emerged. Yet, its complicate feature engineering process and heavy reliance on the lateral views 

serve as challenges. This study aimed to propose a view-independent vision-based gait event 

detection using deep learning networks that requires no pre-processing. A total of 22 participants 

performed seven different walking and running-related actions and the sequential video frames 

acquired from their actions were used as the input of the deep learning networks to produce 

the probability of gait events as outputs. The Transformer network and ResNet18 trained with 

sequential video frames achieved an F1-score of 0.956 or higher for walking straight and walking 

around. The detection performance on the frontal, lateral, and backside views did not differ much. 

The findings enhance applicability of vision-based approach and contribute to increasing its 

utility in health monitoring.

1. Introduction

Accurate and reliable gait assessment is crucial in utilizing the ample health information embedded in it. Ever 

since the introduction of inertial measurement unit (IMU) sensors and machine learning techniques, the accuracy of 

the sensor-based measurement improved greatly and brought about many meaningful changes in the field both academic 

and clinical Simonetti, Villa, Bascou, Vannozzi, Bergamini and Pillet (2019); Aqueveque, Morrison, Osorio and 

Pastene (2020); Gurchiek, Garabed and McGinnis (2020); Miyake, Kobayashi, Fujie and Sugano (2020); Romijnders, 

Warmerdam, Hansen, Welzel, Schmidt and Maetzler (2020); Bijalwan, Semwal and Mandal (2021); Sahoo, Saboo, 

Pratihar and Mukhopadhyay (2020); Jellish, Abbas, Ingalls, Mahant, Samanta, Ospina and Krishnamurthi (2015); 

Zahradka, Verma, Behboodi, Bodt, Wright and Lee (2020); Lempereur, Rousseau, Rémy-Néris, Pons, Houx, Quellec 

and Brochard (2020). Still, requiring much work for a setup by a trained professional and high cooperation from a 

participant serves as a major challenge, hindering its widespread use in the everyday daily environment. In an effort to 

find a less demanding approach to detecting gait events, vision-based gait measurement has emerged and meaningful 

progress has been made.

Vision-based measurement of gait solely relies on the video images to acquire data. While the appearance-based 

methods use silhouettes of a person to understand spatiotemporal changes between two or more subsequent frames 

Nieto-Hidalgo, Ferrandez, Valdivieso-Sarabia, Mora-Pascual and García-Chamizo (2015); Tang, Li, Tian, Ding and 

Lin (2019); Nieto-Hidalgo, Ferrández-Pastor, Valdivieso-Sarabia, Mora-Pascual and García-Chamizo (2016b); Nieto- 

Hidalgo, Ferrandez, Valdivieso-Sarabia, Mora-Pascual and García-Chamizo (2016a); Yang, Ugbolue, Kerr, Stankovic, 

Stankovic, Carse, Kaliarntas and Rowe (2016); Verlekar, Vroey, Claeys, Hallez, Soares and Correia (2019), the pose- 

based methods use depth-sensing cameras or human pose estimation machines to acquire the skeletal structure and 

features such as leg length, normalized average stride, step lengths, and gait velocity Prakash, Kumar and Mittal 

(2016b); Prakash, Gupta, Kumar and Mittal (2016a); Arcila Cano, Ewins, Shaheen and Catalfamo Formento (2017); 

Rocha, Choupina, do Carmo Vilas-Boas, Fernandes and Cunha (2018); Chakraborty and Nandy (2020).

Nieto-Hidalgo et al. designed an appearance-based gait classification system by detecting heel-strike (HS) and 

toe-off (TO) events from the lateral views and achieved an F1-score of 0.83 in measuring normal gaits Nieto-Hidalgo
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Figure 1: (a) Experimental setup with six RGB cameras for Dataset 1, (b) Experimental setup of Dataset 2 with eight RGB 

cameras.

et al. (2016b). Tang et al. proposed a new feature called consecutive silhouettes difference (CSD) maps by encoding 

several consecutive silhouettes to represent gait patterns and detected TO events using them with a convolutional neural 

network Tang et al. (2019). A markerless 2D video-based system to estimate HS and TO events has been suggested as 

well. As for the pose-based measurement, a fully automatic gait analysis system based on a single RGB-D camera was 

proposed in recognizing walking, standing, and marching activities Rocha et al. (2018) and a passive marker-based 

system for automated detection of HS and TO events was designed and an F1-score of 0.93 on their test set from the 

lateral view was achieved Prakash et al. (2016b).

Despite the inspiring achievements made, most vision-based approaches have been limited to classifying gait types 

such as pathological gait against normal one Verlekar, Soares and Correia (2018); Albuquerque, Machado, Verlekar, 

Soares and Correia (2021a); Dentamaro, Impedovo and Pirlo (2020); Sabo, Mehdizadeh, Ng, Iaboni and Taati (2020); 

Cao, Xue, Chen, Chen, Ma, Hu, Ma and Ma (2021); Kidziński, Yang, Hicks, Rajagopal, Delp and Schwartz (2020); 

Sikandar, Rabbi, Ghazali, Altwijri, Alqahtani, Almijalli, Altayyar and Ahamed (2021) or to recognizing a person by 

his or her gait Zhang, Wang and Li (2021); Chao, He, Zhang and Feng (2019); Singh, Jain, Arora and Singh (2018); 

Verlekar, Correia and Soares (2017); Liao, Cao, Garcia, Yu and Huang (2017); Shiraga, Makihara, Muramatsu, Echigo 

and Yagi (2016); Albuquerque, Machado, Verlekar, Correia and Soares (2021b); Albuquerque, Verlekar, Correia and 

Soares (2021c); Masullo, Burghardt, Damen, Perrett and Mirmehdi (2020) and little attention has been paid to gait event 

detection.

Figure 2: (a). The Moticon Science pressure sensor insole and (b). The location of sensors.
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Table 1 

The demographic and anthropometric characteristics of participants of the datasets.

　 Dataset 1 Dataset 2

Number of participants (Female) 11 (3) 11 (4)

Age (years) 24.2 ± 3.8 25.8 ± 2.7

Height (cm) 170 ± 6.4 173 ± 8.5

Weight (kg) 71.7 ± 16.1 66 ± 12.5

       Data are presented as mean ± SD.

Relying heavily on human silhouettes that are extracted from original RGB frames which are susceptible to the view 

angles and other aspects like the distance between the camera and subject or clothing conditions still serves as a major 

challenge of ensuring accuracy on top of feature extraction processes being laborious and time-consuming. The pose-

based methods which entirely depend on depth-sensing cameras are quite costly and require an intricate set of an 

environment. The absence of joint information hinders the exact detection of gait as well. On top of that, vision-based 

approaches rely heavily on the lateral views rather than the frontal ones for the frontal ones have little contrast among 

the straight silhouettes and skeletons.

Hence, this study aimed to find a more reliable way of assessing gait using video images and propose a view-

independent vision-based approach to detecting gait events. Attention-based deep learning networks were trained with 

the video images of various walking activities and predicted the foot contact (FC) and foot-off (FO) for each frame as 

outputs. The prediction was validated by comparing the predicted gait events with the actual gait events in frames. The 

findings will help increase the potential of vision-based gait assessment being applied to the everyday life of us and 

will contribute to the establishment of remote health monitoring (RHM) or remote diagnosis based on it.

2. Materials and Methods

2.1. Experimental protocol to obtain the two datasets
This study is based on work supported by the Institutional Review Board of the Korea Institute of Science and 

Technology (IRB No. 2019-029). Two experiments were conducted to obtain two separate datasets.

2.1.1. Dataset 1

Eleven participants without any history or presence of neurological disorders participated in the first experiment. 

As shown in Fig.1(a), the data was collected from an indoor environment under 6 different viewing angles: 3 frontal 

views and 3 lateral views. The capture area had a size of 3.68 meters in length and 2.0 meters in width. The data 

from a participant was simultaneously captured by timely-synchronized 6 RGB cameras with a resolution of Full 

HD and a frame rate of 60 Hz. There were three different walking actions in this dataset: Walking Straight (WS), 

Walking Around (WA), and Walking on Treadmill (WoT). For WS, each participant was requested to walk straight at 

their self-selected pace and turn back at a specific point and repeat this for a minute. For WA, participants were 

asked to walk around freely at their self-selected pace in the capture area for a minute as well. As for WoT, 

participants were asked to walk on a treadmill for 30 seconds with its speed fixed at 3.5m/s. The participants were 

requested to carry out each action twice. A total of 1.8M frames were acquired in the dataset. The dataset details are 

summarized in Table 2.

2.1.2. Dataset 2

Another eleven participants were involved in the second experiment. The data was collected from an indoor 
environment, as shown in Fig.1(b), and the capture area had a size of 4.0 and 2.0 meters. Timely-synchronized 8 RGB 
cameras simultaneously captured the data with a resolution of 1280×720 and a frame rate of 60 Hz. The participants 
were instructed to perform seven walking and running-related actions at three different speeds: WS, WA, Running 
Straight (RS), Running Around (RA), Walking on Toes (WT), Running on Toes (RT) and Walking in Place (WIP) at 
preferred, slow, and fast speeds. The participants were asked to perform all actions 15% to 25% slower and faster than 
their preferred speed for slow and fast speeds. For WS and RS actions, each participant was requested to walk and run 
straight and turn back at a specific point at preferred, slow, and fast speeds for 35 seconds. As for WA and RA actions, 
participants were asked to walk and run around freely in the capture area at three different speeds for 35 seconds as well.
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Table 2

The summary of the Datasets for Gait Event Detection

　
 No of subjects Action name Time Speeds

Frame 

rate

No of 

Views

Total 

frames 

Walking Straight 475200

Walking Around
60 x 2 n

475200

D
a

ta
se

t 
1

11 (male 8 and 

female 3) Walking on 

Treadmill
30 x 2 3.5m/s

60fps 6

237600

Dataset 1 size 1188000

Walking Straight 1108800

Walking Around 1108800

Running Straight 1108800

Running Around 1108800

Walk on Toes 1108800

Run on Toes 1108800

D
a

ta
se

t 
2

11 (male 7 and 

female 4)

Walking in Place

35 x 2 s/n/f 60fps 8

1108800

Dataset 2 size 7761600

Walking speeds were self-selected: preferred (n), slow (s), and fast (f).

For WT and RT actions, the participants were instructed to walk and run only on their toes for 35 seconds without their 

heels contacting on the ground. The participants were requested to carry out each action twice. The dataset acquired 

was 6.5 times bigger than the first dataset. Table 2 summarized the dataset details.

All 22 participants provided a written informed consent form prior to the experiments. All participants neither 

reported inconvenience while walking nor had gait disturbance identifiable by naked eyes. The demographic and 

anthropometric characteristics of the participants are summarized in Table 1. Each video was equipped with human 

bounding boxes on every frame and annotations containing the frame numbers in four gait events: right FC and FO 

and left FC and FO.

2.2. Target construction for gait events detection
2.2.1. Gait temporal parameters extraction

In the medical field, FC event is defined as the moment that foot touches the ground while FO event is defined as 

the moment that foot leaves the ground (Fig.4(a)). Following above definition, all the video frames acquired from the 

dataset 1 were manually labeled by an expert annotating FC and FO events of both legs. The labels then were cross-

checked by another expert.

Figure 3: Gait events detection from the total pressure data measured at the left and right foot. The threshold-crossing points 

respectively determined the foot contact and foot off times. (FC�squares, FO�circles)
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Table 3 

The condition checks of the developed gait event detection algorithm for labeling.

Label Condition Checks & Obtain frame numbers

Time-stamps [(TPi-1 <TPi <TPi+1) ∧ min(|TPi � Th|, |TPi+1 � Th|)]
FC

Frame Numbers [TS × FPS]

Time-stamps [(TPi-1 >TPi >TPi+1) ∧ min(|TPi � Th|, |TPi+1 � Th|)]
FO

Frame Numbers [TS × FPS]

TPi is the ith value of total pressure data and Th is the pressure threshold.

TS is the values of the time-stamp defined with previous conditions, and FPS is a 

frame rate.

For dataset 2, the Moticon SCIENCE pressure sensor insoles were used to reduce the labeling time and costs Morin, 

Muller, Pontonnier and Dumont (2021); Antwi-Afari, Yu, Li, Darko, Seo and Wong (2018); Chatzaki, Skaramagkas, 

Tachos, Christodoulakis, Maniadi, Kefalopoulou, Fotiadis and Tsiknakis (2021). The Moticon SCIENCE sensor insole 

(Fig.2(a)) is a professional, wireless measurement tool that has a sufficient number of pressure sensors (Fig.2(b)) and 

a 6-axis Inertial Measurement Unit (IMU) sensor. These pressure insoles were inserted inside the shoes of each 

participant. The annotation of gait events was made using the gait event detection algorithm developed for this purpose. 

The gait event detection algorithm was based on the total pressure data from smart sensor insoles for both legs and the 

pressure threshold parameter which was computed as follows where W is the bodyweight of a participant and Fp is a 

pressure factor of 0.98:

Threshold = W × Fp                                                                                                                                             (1)

As Fig.3 shows, the time-stamps in which gait events occur were extracted by analyzing total force data for both 

legs. The closest point respectively determined the FC and FO times with the pressure threshold, and these time-stamps 

were multiplied by a frame rate of 60Hz to obtain the frame numbers that contain the FC and FO events. Table 3 shows 

the condition checks and the respective labels of the developed gait event detection algorithm for this labeling. The 

results of the algorithm were cross-validated using the video data.

2.2.2. Target construction

To avoid the training becoming unstable by micro labelling of each gait event which makes the labels too sparse 

for frame numbers, the hard labels were smoothed into soft labels. We smoothed our raw and frame-specific labels to 

produce probability distributions that fitted around the frames in which gait events occurred since the neighboring 

frames of each FC and FO event having similar pixel contents could confuse the networks and burden the learning. The 

target was four one-dimensional Gaussian distribution curves that were associated with the four gait events, 

respectively (Fig.4(b)).

Figure 4: (a) Definitions used to annotate gait events on video frames and (b) Target construction for gait events 

detection. Note: FC can be heel-strike, midfoot-strike, and toe-strike, and FO can be toe-off, midfoot-off, and heel-off.

Electronic copy available at: https://ssrn.com/abstract=4114273



Deep Learning Networks for View-independent Gait Events Detection

A.Jamsrandorj et al : Preprint submitted to Elsevier Page 6 of 15

2.3. Network architectures
Two different deep learning networks were developed for gait events detection: Attention-based and 2D 

convolutional neural network (CNN) networks.

2.3.1. Attention-based network

The architecture of the attention-based network was modular and composed of three consecutive parts: a 2D spatial 

feature extraction model, a temporal attention-based encoder, and an MLP-based detector. Fig.5 demonstrates the 

architecture of the attention-based network. We adopted the ResNet18 pre-trained on ImageNet as the backbone spatial 

feature extractor for its relatively small size and proven effectiveness. A total of 27 subsequent frames were used as 

the input. We used a Transformer encoder architecture that applies the attention mechanisms for temporal feature 

extraction. The sequence of feature vectors injected positional information and then fed it to the Transformer encoder, 

which contained two encoder layers. Each encoder layer had four multi-head self-attention and a feed-forward network. 

A final module, the MLP-based detector consisted of two fully connected layers with a ReLU activation function and 

Dropout between them.

2.3.2. 2D convolutional neural network

The architecture of the 2D CNN network used in this study is depicted in Fig.6. A stack of 9 subsequent frames 

was used as the input of the network for obtaining the spatiotemporal and motion representations, and the output was 

the probability of each gait event for each frame. The experiment was carried out with ResNet18. For this network, the 

last FC layer was removed and a new FC layer was added to adapt to our output.

Figure 5: The architecture of the attention-based network.  The Transformer encoder, which consisted of two Encoder layers, 

was used. Each encoder layer had four multi-head self-attention sublayers and a feed-forward network.
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Figure 6: The architecture of the two-dimensional convolutional neural network.  The ResNet18 pre-trained on ImageNet was 

used. Input is a stack of T frames, and output is the probability of each gait event for each frame.

2.4. Implementation details
2.4.1. Data processing

The input tensors were constructed from T subsequent frames with the ground truth human bounding boxes and 
each event probability target for all T frames. The raw frames were pre-processed by cropping the person in the frame 
based on the ground truth human bounding box, then pad left and right to get a square image and resized it to a size 
of 448 × 448. The dataset was separated by participants into three parts: the data from 11 participants for the training set 
(1036.8k frames), data from 6 participants for the validation set (561.6k frames), and the data from the remaining 5 
participants for the test set (460.8k frames). We used data from WS and WA actions for the training, validation, and 
testing in the experiments, and the rest of the actions were used for an additional test.

2.4.2. Training scheme

All experiments were carried out with the PyTorch framework. The weights of the networks were initialized by 

pre-training on the ImageNet for gait events detection. During all training experiments, the Mean Squared Error 

(MSE) and the Adam optimizer were used with an initial learning rate of 0.001 and a batch size of 16. The learning 

rate was reduced two times after every three epochs. The horizontal flip was applied to input frames with a 

probability of 0.5.

2.5. Evaluation metrics
The target for gait events detection was designed as probability distributions for each gait event, and the 

detection was assessed with two metrics. A Smooth Percentage Correct Events (SPCE) which calculates the 

difference between target and prediction probabilities for every frame was adopted Voeikov, Falaleev and Baikulov 

(2020).

Figure 7: Graphical demonstration of frame-error that used to calculate the precision of the prediction. The frame difference 

between the target frame of gait events and the prediction frame is noted as d. To discretize the probability distribution into 

precise frame numbers that include gait events, the peak values were picked at a threshold of 0.6.
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Table 4 

The performances of the networks on the test set of Dataset 1.

Frontal Lateral
　 Model

SPCE F1 SPCE F1

ResNet18 0.906 ± 0.005 0.901 ± 0.008 0.908 ± 0.004 0.884 ± 0.005

W
S

Transformer 0.938 ± 0.004 0.912 ± 0.020 0.942 ± 0.002 0.921 ± 0.002

ResNet18 0.926 ± 0.009 0.956 ± 0.007 0.918 ± 0.005 0.959 ± 0.004

W
A

Transformer 0.943 ± 0.007 0.961 ± 0.010 0.947 ± 0.005 0.964 ± 0.002

ResNet18 0.921 ± 0.010 0.961 ± 0.039 0.828 ± 0.102 0.911 ± 0.041
W

o
T

Transformer 0.937 ± 0.009 0.993 ± 0.003 0.923 ± 0.009 0.979 ± 0.017

Data are presented as mean ± SD.

An event was considered correct if this probability difference was less than a threshold of 0.25. The second metric 

was the F1-score (F1) which evaluates the precision of the gait event detection which was calculated as follows:

                       (2)

(3)

(4)

where P ∈ (0, 1) and R ∈ (0, 1) are precision and recall, respectively. TPs are true positives, FPs are false positives, 

and FNs are false negatives. As shown in Fig.7, for each probability distribution, the peak values were first picked at 
the threshold of 0.6 to precise the frame numbers containing gait events, then the frame difference between the target 
frame number and the prediction frame number was calculated. Each event was treated as a TP if the frame difference 
was less than a threshold of 4 frames. All other gait event predictions were considered as FPs, and all targets that 
were not detected were treated as FNs. These TPs, FPs, and FNs were used to calculate the precision showing how 
many detected gait events matched with the actual gait events and the recall showing how many actual gait events were 
detected.

3. Results

The distributions of the probabilities for each gait event were illustrated in Fig.8, which shows that both networks 

properly detected the frames with FC and FO events.

Table 4 summarizes the performance of the networks on WS and WA actions in Dataset 1. The performances on 

frontal and lateral views were reported separately. As shown in Table 4, the Transformer network achieved the best 

performance in detecting the gait events for both WS and WA actions. For WS action, an F1-score of 0.912 (precision 

0.948 and recall 0.877) was achieved from the frontal view and that of 0.921 (precision 0.952 and recall 0.892) was 

achieved from the lateral view. As for WA action, an F1-score of 0.961 (precision 0.955 and recall 0.970) was achieved 

from the frontal view and that of 0.964 (precision 0.957 and recall 0.974) was achieved from the lateral views. The 

highest values of SPCE for WS action were 0.938 and 0.942 from the frontal and lateral views while those for WA 

action were 0.943 and 0.947 from the frontal and lateral views.

Table 5 shows the performance of the networks on the test set of Dataset 2. The Transformer network for WS 

action at the preferred-, slow-, and fast-paced walking achieved the highest F1-scores of 0.904 (precision 0.966 and 

recall 0.846), 0.898 (precision 0.959 and recall 0.833), and 0.960 (precision 0.975 and recall 0.944), respectively. 

For WA action, the highest F1-scores of 0.982 (precision 0.973 and recall 0.986), 0.987 (precision 0.996 and recall 

0.978), and 0.988 (precision 0.983 and recall 0.996) were achieved at the preferred-, slow-, and fast-paced walking. 

The Transformer network on the test set of Dataset 2 achieved the highest SPCE values for both WS and WA actions. 

As Table 5 shows, the highest SPCE values for WS action were 0.934, 0.924, and 0.947 at the preferred-, slow-, and 

fast-paced walking, whereas, those for WA action were 0.958, 0.973, and 0.953.
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The performance of the networks using the WT and RA actions from Dataset 2 and WoT action from Dataset 1 was 

examined. Although these actions were not used for training, the Transformer network achieved an F1-score of 0.993 

(precision 0.993 and recall 0.991) for WoT from the frontal view with the highest SPCE of 0.937. As for the lateral 

view of the same action, an F1-score of 0.979 (precision 0.990 and recall 0.973) was achieved with the highest SPCE 

of 0.923 (Table 4). As for the WT action, the Transformer network achieved an F1-score of 0.952 (precision 0.956 

and recall 0.948) in detecting gait events at preferred-paced and 0.998 (precision 0.997 and recall 0.997) at fast-paced 

walking (Table 5). For WT action at slow speed, the ResNet18 network achieved the highest detection performance 

showing an F1-score of 0.942 (precision 0.946 and recall 0.936). For RA actions, the Transformer network achieved 

an F1-scores of 0.977 (precision 0.990 and recall 0.960) at the preferred speed, while that of 0.986 (precision 0.999 

and 0.976) and 0.964 (precision 0.998 and 0.937) were achieved at slow and fast speed. The highest SPCEs for this 

action at the preferred-, slow-, and fast-speed were 0.958, 0.973, and 0.953, respectively.

Table 6 and Table 7 summarises FO and FC events detection results of the two networks on the test set of 

Dataset 1 and Dataset 2, respectively. For both ResNet18 and Transformer networks, the detection performance of the 

FO event was higher than that of the FC event. The deep learning networks achieved the average F1-scores of 0.905 

and 0.934 for the left and right FO event detection for WS action while those for the right and left FC event detection 

were 0.900 and 0.876. For WA action, the average F1-scores were 0.975 and 0.967 for the left and right FO event 

detection, and those for the left and right FC event detection were 0.947 and 0.923.

As illustrated in Table 7, for WS action of Dataset 2, the average F1-scores detecting the left and right FO events 

were 0.930 and 0.923. The average detection performance of the networks was F1-scores of 0.885 and 0.898 on the 

left and right FC events. For WA action, the average detection performance was F1-scores of 0.989 and 0.991 for the 

left and right FO event detection, and those for the left and right FC event detection were 0.960 and 0.978. The 

Attention-based network achieved the best performance for most actions, while a simple 2D CNN network trained with 

a stack of nine frames likewise achieved satisfactory results.

Table 5 

The performances of the networks on the test set of Dataset 2.

　 Models
Walking

Speed
SPCE F1

N 0.901 ± 0.011 0.889 ± 0.017

S 0.903 ± 0.012 0.868 ± 0.030ResNet18

F 0.936 ± 0.005 0.939 ± 0.015

N 0.934 ± 0.006 0.904 ± 0.031

S 0.924 ± 0.010 0.898 ± 0.030

W
S

Transformer

F 0.947 ± 0.008 0.960 ± 0.015

N 0.952 ± 0.006 0.973 ± 0.011

S 0.954 ± 0.008 0.979 ± 0.010ResNet18

F 0.942 ± 0.007 0.971 ± 0.012

N 0.958 ± 0.014 0.982 ± 0.004

S 0.973 ± 0.005 0.987 ± 0.011

W
A

Transformer

F 0.953 ± 0.007 0.988 ± 0.004

N 0.881 ± 0.011 0.940 ± 0.028

S 0.916 ± 0.009 0.942 ± 0.020ResNet18

F 0.959 ± 0.008 0.985 ± 0.012

N 0.904 ± 0.014 0.952 ± 0.022 

S 0.933 ± 0.010 0.933 ± 0.036

W
T

Transformer

F 0.966 ± 0.004 0.998 ± 0.003

N 0.918 ± 0.007 0.940 ± 0.020

S 0.951 ± 0.009 0.971 ± 0.016ResNet18

F 0.905 ± 0.010 0.915 ± 0.012

N 0.939 ± 0.009 0.977 ± 0.013

S 0.973 ± 0.009 0.986 ± 0.007

R
A

Transformer

F 0.922 ± 0.012 0.964 ± 0.020

Walking speeds: preferred (N), slow (S), and fast (F). 

Data are presented as mean ± SD.
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Figure 8: (a). The probability distributions of detected and actual gait events for WS action and (b). The probability 

distributions of detected and actual gait events for WA action.

4. Discussion

This study pioneered a way of improving the reliability of vision-based gait detection and proposed a view- 

independent approach. Training attention-based deep learning networks with sequential video frames achieved 

outstanding detection performance regardless of the camera view angles. On top of improving reliability, the proposed 

approach requires neither a sophisticated experimental setup nor time-consuming pre-processing, advancing its 

applicability greatly from the previous vision-based gait detection approaches. When applied in practice, the proposed 

approach can provide a great convenience in terms of its use. With the videos of their walk, patients can communicate 

with their physicians whether they are in need of making a trip to a practice or hospital in advance which can prevent 

unnecessary trips. Since filming does not require any professional knowledge or intricate engineering, it can serve as 

a simple and burden-free monitoring tool for anyone. Moreover, it can serve as an alternative to a self-reported survey 

when investigating the health conditions of the elderly who are having a hard time addressing their issues properly for 

their declining cognitive ability. The potential of the proposed approach in the field of future RHM or remote diagnosis 

based on it can be found enormous.

The study made a step forward from the previous studies that explored vision-based gait detection by making it less 

view-dependent and improving its accuracy. Previously, the studies on vision-based gait detection mainly used human 

silhouettes and human pose information extracted from original RGB frames. The challenge was that those silhouettes 

altered easily depending on the view angles and distance between the camera and human. Clothing conditions served 

as another obstacle as well. Nieto-Hidalgo et al. tried to break free from the heavy reliance on the lateral images

Table 6

Comparison of detection results on FO and FC events for the actions of Dataset 1.

F1

　
Model

LFC LFO RFC RFO

ResNet18 0.891 0.884 0.871 0.925

W
S

Transformer 0.909 0.927 0.880 0.944

ResNet18 0.941 0.974 0.921 0.967

W
A

Transformer 0.953 0.977 0.926 0.968
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Table 7

Comparison of detection results on FO and FC events for the actions of Dataset 2.

F1

　
Model

Walking

speed LFC LFO RFC RFO

N 0.842 0.906 0.879 0.928

S 0.865 0.901 0.858 0.846ResNet18

F 0.888 0.939 0.950 0.975

N 0.891 0.923 0.881 0.920

S 0.906 0.922 0.858 0.904

W
S

Transformer

F 0.919 0.989 0.961 0.967

N 0.938 0.982 0.979 0.986

S 0.963 0.996 0.968 0.993ResNet18

F 0.932 0.983 0.979 0.988

N 0.969 0.986 0.981 0.991

S 0.986 0.998 0.969 0.991

W
A

Transformer

F 0.974 0.990 0.991 1.000

N 0.933 0.959 0.898 0.971

S 0.896 0.986 0.917 0.965ResNet18

F 0.964 0.993 0.993 0.994

N 0.916 0.990 0.906 0.996

S 0.878 0.991 0.902 0.958

W
T

Transformer

F 0.988 0.996 1.000 0.998

N 0.859 0.969 0.964 0.969

S 0.904 0.982 0.990 0.994ResNet18

F 0.786 0.969 0.927 0.979

N 0.959 0.993 0.976 0.998

S 0.975 0.998 0.974 1.000

R
A

Transformer

F 0.952 0.994 0.930 0.995

Walking speeds: preferred (N), slow (S), and 

fast (F). 

and suggested a gait analysis system based on the frontal images. Yet, the highest accuracy achieved was 89.1% 

which challenged its application in real practice Nieto-Hidalgo et al. (2016a). The accuracy achieved by Xu et al. 

who attempted to utilize the frontal images for vision-based gait detection was 94.3% for HS events and 42.7% for TO 

events Xu, McGorry, Chou, Lin and Chang (2015). The accuracy achieved by the Transformer network in this study far 

exceeds those obtained by these studies, increasing the reliability and potential of the vision-based gait detection. To our 

knowledge, this is the first study that invited multiple view angles in one. Lacking information, previous studies using 

only one view angle called for an additional procedure of acquiring additional information but this study managed to 

obtain a high accuracy using RGB frames exclusively while considering three different angles at the same time. On top 

of that, it should be worth noting that this is the first study that investigated the use of backside views for vision-based 

gait detection. Despite years of research, little attention has been paid to the use of backside view for gait detection. 

The results of this study show the detection performance for the lateral, frontal, and backside views did not differ 

significantly, suggesting that the backside view can be comparable to the frontal and lateral ones.

The outstanding detection performance that the Transformer network achieved in this study might have 

derived from its ability to utilize the sequential data. Since gait events are sequential, the networks were required to 

learn the dependencies between the two sequential events. The simple CNN, ResNet18 here, can learn these 

dependencies using different kernels, however, the computational cost would be enormous when kernel size 

increases to capture dependencies of long-range sequences. Unlike CNN, the transformer network can capture 

dependencies from long- range input sequences using multi-head attention mechanisms and positional encodings, 

avoiding any possible computational cost problems. Using 27 frames as inputs which were far more than 9 of the 

ResNet18 network, the Transformer network might have been able to outperform the other in its detection. Having 

more steps of feature extraction might have contributed to its better detection as well. 

The F1-scores achieved with WS and WA actions varied, showing better detection performance with WA 

act ion compared to that with WS action. A possible explanation behind this can be that, unlike WA action in which 

the participants did not stop walking, WS action had walking straight and turning-back stages and the detection of 

these two different stages varied. While gait events were well detected in the walking straight stage, the detection 

dropped significantly in the turning back stage (Table 8).
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Table 8

Comparison of the performances of the networks at different motions.

F1
Model

Straight Walking Stage Turning Back Stage

ResNet18 0.987 ± 0.004 0.634 ± 0.059

Transformer 0.992 ± 0.003 0.708 ± 0.046

Data are presented as mean ± SD.

The detection performance of FC events was lower than that of FO events in the turning back stage as well. The act 

of turning back which involves some self-occlusions between the left and right limbs may have affected the lowering 

of the detection performance. Nevertheless, the Transformer network made a quite reliable detection even in the 

turning back stage (Fig.9).

The networks in this study showed a fairly good detection of RA and WT actions even though they had not been 

introduced to the data for these actions. Detecting gait events in RA and WT actions has been a major challenge for 

the conventional detection approaches based on HS and TO since WT action does not exhibit any HS for it starts from 

toe-strike and ends with toe-off and RA action has fewer HS as it involves a midfoot-strike with more toe-strike as 

the running speed increases. Using FC and FO alternatively may have contributed to better detection of these actions. 

It is quite remarkable that the networks detected gait events in RA action accurately with its limited training with 

walking-related actions only.

When the detection performance of using the hard labels was compared with that of using the soft labels, the 

detection performance was better with the soft labels (Table 9). Training the networks with the hard labels landed in a 

relatively poor detection due to their learning being challenged by too many frames marked as 0. Softening the targets 

to smooth probability distribution may have reduced the burden of learning which in turn resulted in better detection 

performance.

The study found a mild drop in the detection performance at slow-paced walking compared with that at preferred- 

and fast-paced walking. As shown in Table 10, the detection performance did not differ greatly by the number of 

thresholds used but as for the slow-paced walking, a great variation by thresholds numbers was observed. When 

participants walked slowly, they not only walked slowly but also waited for some time before making the following 

action.

Figure 9: Comparison of detection results at different motions.
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Table 9

Comparison of the performances of the networks trained with the Hard- and Soft-Labels.

F1

　
Model

Hard-Label Soft-Label

ResNet18 0.590 ± 0.098 0.893 ± 0.011

W
S

Transformer 0.708 ± 0.018  0.917 ± 0.013

ResNet18 0.683 ± 0.048 0.957 ± 0.005

W
A

Transformer 0.739 ± 0.038 0.963 ± 0.006

Data are presented as mean ± SD.

Therefore more frames between the two sequential events were acquired which might have burdened the learning by 

requiring more time for the networks to recognize the features of the coming events. The detection performance for 

slow-paced walking improved when a more comprehensive threshold was used.

Despite the remarkable breakthrough it has made, the study bears several limitations. The first is that the study 

population was exclusively young and healthy so the networks trained and tested were void of the gaits of the elderly 

or ones with any health issues. Further studies including various age groups and health conditions such as Parkinson�s 

disease, osteoarthritis, stroke, cerebral palsy, multiple sclerosis, and muscular dystrophy should follow to validate the 

proposed approach. Secondly, the experiments for this study were conducted under a well-controlled situation in a 

limited space. Using a well-organized and rather rectangular shape of a space, the study is in no position to verify 

whether the same results can be achieved under long corridor experimental setups where the scale of people varies 

greatly depending on the distance from the camera. Future validation of this study at various experimental setups 

should be carried out. The third is that, although the heights of the participants were different, the height of the cameras 

was fixed and no other adjustment according to the heights of a participant was made. For this group of participants, 

however, the heights of the participants did not deviate significantly from the average range. For the participants whose 

heights vary greatly, it may be necessary to adjust the height of the camera depending on their heights.

5. Conclusion

This study aimed to find a more reliable vision-based gait event detection and found an approach that is view-

independent and accurate. Training Attention-based and 2D CNN networks with sequential video frames, the 

Transformer network detected gait events with the highest F1-score of 0.998. The study has also shown that the use of 

the frontal view is comparable to using the lateral view. The applicability of the proposed approach can be enormous 

given that it does not require any special camera setup or complicate feature engineering process. Future studies that 

validate the proposed approach with the gaits from various health conditions such as Parkinson�s disease, frailty, and 

cognitive impairment should follow. The findings can serve as one of the first stepping stones towards future studies 

for gait-based health monitoring both at home and in a clinical setting.

Table 10

F1-scores of the networks at different thresholds.

F1

　
Model

Walking 

Speed
Thresh=2 

(33 ms)

Thresh=4 

(66 ms)

Thresh=6 

(100 ms)

N 0.749 ± 0.032 0.889 ± 0.017 0.906 ± 0.020

S 0.626 ± 0.058 0.868 ± 0.030 0.913 ± 0.027ResNet18

F 0.874 ± 0.033 0.939 ± 0.015 0.943 ± 0.015

N 0.751 ± 0.022 0.904 ± 0.031 0.918 ± 0.030

S 0.731 ± 0.095 0.898 ± 0.030 0.919 ± 0.027

W
S

Transformer

F 0.852 ± 0.032 0.960 ± 0.015 0.974 ± 0.016

N 0.929 ± 0.032 0.973 ± 0.011 0.974 ± 0.016

S 0.903 ± 0.040 0.979 ± 0.010 0.979 ± 0.015ResNet18

F 0.918 ± 0.027 0.971 ± 0.012 0.973 ± 0.011

N 0.927 ± 0.018 0.982 ± 0.004 0.984 ± 0.006

S 0.907 ± 0.020 0.987 ± 0.011 0.989 ± 0.009

W
A

Transformer

F 0.929 ± 0.039 0.988 ± 0.004 0.989 ± 0.004

Walking speeds: preferred (N), slow (S), and fast (F).

Data are presented as mean ± SD.
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