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Abstract
Human Pose Estimation is a task in the field of computer vision that involves identifying
and capturing the positions and orientations of the human body. This is typically done
by predicting the locations of specific keypoints, such as hands, head, and elbows, in an
image. Human Pose Estimation has various applications in different industries, including
robotics, augmented reality, gaming, accessibility, sports, and security.

Grazper Technologies ApS, the partner for this thesis, is working on developing a realtime
3D human pose estimation system using a multicamera setup. The primary application of
this system is in the field of security. However, one of the main challenges in implementing
this system is the requirement of multiple cameras to view the same scene from different
angles. This restriction limits the usability of the system, especially in security applications
where it is unlikely to have more than one or two cameras pointing at the same location
at the same time.

The aim of the present thesis is to study whether we can improve the 3D pose estimation
in these cases by incorporating knowledge about foot contact. To do so, we will acquire
an IoTconnected sole pair that can make pressure measurements, and incorporate it into
Grazper’s current video acquisition setup.

During the course of the thesis, we designed a reliable, stable, and automated data ac
quisition setup, enabling Grazper to easily record highquality datasets with the potential
to obtain synchronized ground truth sole pressure signals. We prove the feasibility of
predicting sole pressure based on the pose using deep learning techniques. Finally, we
show how sole contact can enhance the performance of a pose detector in scenarios with
fewer cameras.

These results offer a strong proof of concept for future AI solutions and demonstrate the
potential of this technique for further development and advancement.
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1 Introduction
Human Pose Estimation is a task in the field of computer vision that involves identifying
and capturing the positions and orientations of the human body. This is typically done
by predicting the locations of specific keypoints, such as hands, head, and elbows, in an
image. Human Pose Estimation has various applications in different industries, including
robotics, augmented reality, gaming, accessibility, sports, and security.

Grazper Technologies ApS, the partner for this thesis, is working on developing a realtime
3D human pose estimation system using a multicamera setup. The primary application of
this system is in the field of security. However, one of the main challenges in implementing
this system is the requirement of multiple cameras to view the same scene from different
angles. This restriction limits the usability of the system, especially in security applications
where it is unlikely to have more than one or two cameras pointing at the same location
at the same time.

The aim of the present thesis is to study whether we can improve the 3D pose estimation
in these cases by incorporating knowledge about foot contact. To do so, we will acquire
an IoTconnected sole pair that can make pressure measurements, and incorporate it into
Grazper’s current video acquisition setup.

We will investigate in which way can pressure readings be incorporated into Grazper’s
pose detection, and design a test environment to characterize the improvements. Fur
thermore, we will design and train several machine learning models in a supervised fash
ion, to try to predict these pressure values from the pose itself. This way, we study the
possibility of removing the dependency on the sole sensors, allowing our proposals to be
incorporated into a reallife application.
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2 Background
Human 3D Pose Estimation has seen significant progress in the recent years, driven by
the advancements in computer vision and deep learning techniques. In this chapter, we
provide an overview of the stateoftheart techniques for human 3D pose estimation from
2D images.

There are different approaches on how to represent the human body structure in the
literature: the skeletonbased model, commonly used in 2D human pose estimation [1]
and naturally extended to 3D. It contains many keypoints in specific joints of the human
body and connects the adjacent ones using edges. This structure is the one Grazper
uses, since their focus is on understanding the person’s position, and therefore it will be
the ones we will work with in this thesis. More recent works use a triangulated mesh to
represent the human skin [2] or the more recently proposed surfacebased model [3].

As per datasets, Human3.6M [4] and HumanEva [5] are the standard for 3D human pose
estimation, both acquired with a motion capture system and representing different com
mon scenarios, walking, jogging, gesturing, smoking, talking on the phone... [6] provides
an extensive list of all the different datasets.

The advent of deep learning has revolutionized the field of human 3D pose estimation.
The approaches can be divided in two categories: direct 3D pose estimation, tries to
predict 3D coordinates of joints directly from input images via 3D heatmaps [7], or lifting
from 2D to 3D pose, inspired by the rapid development of 2D human pose estimation
algorithms [8]. This latter approach is the one Grazper is taking, since it is much less
computationally expensive and their solution is supposed to run realtime.

On the topic of incorporating foot contact information into 3D pose estimation, we found
some articles. [9] proposed a network architecture to detect ground contact events from
2D keypoint estimations to reduce foot artifacts. However, they rely solely on estimates
from the images themselves, and not on real ground truth data. Moreover, [10] tackles
the 3D pose estimation problem doing a physics based model of the human body and
therefore inferring knowledge about foot contact indirectly. However, this setup is more
complex than the one proposed by Grazper, which requires to be run realtime..

For solepressure sensors, Grazper reviewed several commercial options, considering
factors such as intrusiveness, product quality, ease of integration into the data acquisition
pipeline, and cost. After a demo with Moticon OpenGo soles [11] and Sensoria smart
socks [12], Grazper chose the former as the SDK was more suitable for its integration in
the data acquisition pipeline, and since the sensors have to be shared among different
actors, soles seemed better than socks for this purpose.
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3 3D pose estimation
Pose estimation is a fundamental problem in computer vision, with numerous applications
in fields such as augmented reality, robotics, and humancomputer interaction. This chap
ter provides a condensed overview of the approach we have taken on the topic, exploring
how to estimate the 3D poses of humans from 2D images.

3.1 Pinhole camera model
Before focusing on pose estimation, we think explaining the pinhole camera model is ap
propriate. The notation we will use is extracted from [13]. This model describes a camera
that projects scene 3D points into the image plane through a perspective transformation.
We have two sets of coordinate axes, the world coordinates XW , YW , and ZW , and the
camera coordinates XC , YC , and ZC . The latter sit at the camera, having XC and YC
parallel to the camera plane and ZC perpendicular. Figure 3.1 depicts the two sets of
coordinates and the relative camera plane in blue, where the image gets projected. Two
additional sets of 2D coordinates are sitting in the relative camera plane; x and y in world
units (in our case meters), and u and v in pixel values. Notice that their origin is not in the
same position; the first pair’s origin sits where the optical axis intersects the plane, while
the latter sits at the top left corner of the image frame.

The homogeneous transformation between world coordinates and camera coordinates is
encoded by the extrinsic parameters, a translation and rotation matrix [R|t]. If we have a
point in world coordinates (PW ) we can express it from camera coordinates (PC) by:

PC =

[

R t

0 1

]

PW =









r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

















PXW

PYW

PZW

1









.

P=(X,Y,Z)

y

principal point

Yc

Zc Xc

Xw

Yw

Zw

[R|t]

optical axis

Figure 3.1: Schema of the pinhole camera model [14].
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To project 3D points expressed in the camera coordinate system to 2D pixel coordinates,
we use the camera intrinsic matrix, composed of the focal lengths fx and fy expressed in
pixel units, and the principal point (cx, cy), usually close to the image center:

s





u

v

1



 =





fx 0 cx
0 fy cy
0 0 1









XC

YC
ZC



 ,

where s is a scaling constant, in this case equal to ZC . We loose one dimension by doing
this transformation. Figure 3.1 depicts how any point on the red line will be projected to
the same (u, v) position. We only know this scaling constant when we pass from camera
to pixel coordinates. Trying to do the opposite, the scaling constant is unknown and we
encounter a perspective problem, we don’t know how far away that point is in reality.

Additionally, lenses usually have some radial and tangential distortion, and we compen
sate for it with the help of some more camera parameters. We follow the same procedure
as the recommended one in OpenCV’s documentation [15].

In practice, the intrinsic and extrinsic camera parameters are estimated with the help of
checkerboard patterns. The intrinsic camera parameters are specific for each camera,
so we need to calibrate the cameras individually. Figure 3.2a shows a calibration routine
developed by Grazper and used internally for estimating the intrinsic camera parameters.
The fisheye distortion of the lens is visible in the image. For the extrinsic parameters, even
though each camera has its own, we need to calibrate all cameras simultaneously. We do
so by placing a big checkerboard pattern on the floor, in a position where all cameras can
see it, and running an OpenCV routine to set the world coordinates at a specific location
in the pattern and calculate each camera’s extrinsic parameters (see figure 3.2b).

(a) Intrinsic calibration routine (b) Extrinsic calibration

Figure 3.2: Intrinsic and extrinsic camera calibration from the camera point of view
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3.2 2D pose estimation
We decided to approach 3D human pose estimation by estimating the 2D pose using
multiple calibrated cameras and then triangulating it. This is the method Grazper uses
when annotating recording data since, provided enough camera angles, is very accurate.
Grazper has developed its own pose estimation networks, but we will use one of the state
oftheart networks for this thesis. We decided to use Google’s MediaPipe BlazePose [16]
for several reasons.

First the skeleton topology. Unlike other models, BlazePose outputs two keypoints per
foot: heel and toe, which is very convenient for our use case. Plus, using offtheshelf
software makes our work more reproducible. Furthermore, Mediapipe is licensed under
the Apache License 2.0, a permissive license that allows for commercial use, modification,
and patent use. For this reason, Grazper had already integrated this skeleton typology
into its software stack, allowing us to use its data annotation software without any mod
ifications. Finally, BlazePose has been designed to achieve realtime performance on
mobile phones using CPU inference, so it is fast when run on powerful computing plat
forms.

MediaPipe BlazePose expands the standard COCO topology of 17 keypoints [17] to 33,
including keypoints in hands, face, and feet. The BlazePose skeleton topology is depicted
in figure 3.3. The model works in two steps, first it locates the pose regionofinterest
(ROI) within a frame and then uses a pose detector to predict the location of all 33 pose
keypoints on the ROI. On subsequent frames, the ROI is estimated with a tracker based
on the previous frame’s pose keypoints, reducing the computational cost. The first part of
the network is only rerun on frames where the keypoints cannot be found on the estimated
ROI.

Figure 3.3: BlazePose 33 keypoint topology as COCO (colored with green) superset

We used the BlazePose GHUM Full network for all 2D pose estimations in this thesis,
with all the default parameters. The output from the network is a list of pose landmarks,
each consisting of:
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• x and y coordinates normalized to [0, 1] by the image width and height, respectively,
from which we can calculate the u and v values.

• z represents a depth estimate of each keypoint, taking the hips’ midpoint as the
origin. The Mediapipe docs state that the magnitude of z uses roughly the same
scale as x, which is not entirely clear.

• visibility: A value in [0, 1] indicating the likelihood of the landmark being visible
(i.e. not occluded) in the image.

3.3 3D triangulation
Using multiple (N ) cameras, a 3D pose can be estimated by triangulating keypoints. We
can assume that the cameras are synchronized. So, both frames in each camera’s video
feed correspond to the same moment in time. Later, in chapter 4, we will explain how we
achieve the synchronization in practice. We then triangulate frame by frame by doing the
following:

Figure 3.4: Diagram showing the intuition behind our triangulation algorithm.

Every keypoint in the skeleton is tracked separately. Figure 3.4 illustrates the situation
when triangulating one keypoint, and it will help the reader understand the intuition behind
our 3D triangulation method. Only one camera is depicted for the sake of simplicity. Since
we know the camera’s intrinsic parameters, we can obtain the position of the keypoint in
the relative camera plane in camera coordinates (from [XC , YC , ZC ]). pray depicts the
direction of this vector. If the setup were perfect, each camera’s line would intersect in the
real position of the keypoint.

However, since our setup has multiple sources of error: the camera matrices and the
lens calibration are estimated, points can be occluded and the pose detection model is
imperfect the lines will therefore not intersect. We can solve this problem geometrically
by finding the closest point to all lines.
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We want to obtain pray in world coordinates. If we translate the keypoint vector from
camera coordinates to world coordinates we will obtain vector Q. We can finally subtract
the camera position from world coordinates Q and, after normalising, we obtain pray. The
camera position is the 4th column of the inverse extrinsic matrix.

We can now obtain an orthonormal set of coordinates through GramSchimdt orthonor
malization, pperp1 and pperp2. With this orthonormal basis, one can see that the projection
of P onto the plane formed by pperp1 and pperp2 is the same as the projection of Q. In
other words, if we had vectors P and Q expressed in this new basis without translating,
their vector components in the direction of pperp1 and pperp2 would be the same. Since we
know the components of these vectors in world coordinates, we know the rotation matrix
that corresponds to this transformation.

Let us call q the rotated Q vector, and write the following linear system of equations:




pxray p
y
ray pzray

pxperp1 p
y
perp1 pzperp1

pxperp2 p
y
perp2 pzperp2









P x

P y

P z



 =





qpray

qpperp1

qpperp2



 .

We know this system doesn’t have a solution, since the first line is simply wrong. We
will address this issue shortly. For now, we can write a similar system for all cameras in
the scene. Each camera will have its own pray, pperp1, pperp2, and q, following the same
procedure mentioned above. The world set of coordinates is unique, since the cameras
are calibrated. Then, we can write them all together in an overdetermined linear system
of the form Ax = b:
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.

If the setup was perfect, we could remove the first row of each camera’s triplet, and the
system would have one unique solution. Since that is not the case, the system will have
no solution. However, we can find an estimate using Weighted Least Squares. We set this
vector of weights with a 0 in the first line of each camera’s system to avoid these wrong
lines from contributing to the solution. For the other weights, we propose to use each
camera’s visibility for the keypoint that is being triangulated. That way the solution
will be closer to the cameras that have a better estimate of the keypoint.

However, this method breaks when the keypoint can only be seen from one camera. Then,
the WLS solution will just be the vector Q. For this reason, we added the condition that
each keypoint should be visible from at least two cameras with a visibility of 0.5 in
order to triangulate.
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3.4 Onecamera 3D pose estimation
We also approached the onecamera 3D pose estimation problem in this thesis, which re
quires a different approach than triangulation. Our proposal is combining the pseudo3D
output from BlazePose, together with foot contact knowledge, to obtain a 3D pose esti
mation. We will describe our approach and mention the several problems we ran into in
this section.

For every frame in the video, we give each foot’s heel and toe a score based on their
visibility and the pressure each channel received, and then select the one with the
highest score. Since we know that this joint is in contact with the ground, we know it
is contained in the ground plane. So, the real position of the keypoint would sit at the
intersection of the keypoint line with the ground floor. This point is known, and we can
then find the scaling contact s.

Of course, this only solves the scaling problem for that specific keypoint, and we rely on
how good the pseudo3D prediction actually is. Here is where we encountered the issue.
We could not find a good way to use the model’s z estimation. The documentation is
not clear on how this output should be used. We tried several interpretations, and none
yielded a reasonablelooking skeleton. In order to have so, it was needed to divide by an
arbitrary constant we could not argue for.

On top of that, the output was always tilted at roughly the same angle as the camera. It
almost seems like the model was expecting the camera to be looking in a horizontal direc
tion, parallel to the ground. Figure 3.5 depicts this behaviour. Here, we ran BlazePose on
view 3.5a and used the method described above to calculate the 3D pose. When viewing
from 3.5b this tilting behaviour becomes evident.

We could not find an easy way around this issue. One possible alternative was, first,
tilting the output ourselves, which posed the question, can we be sure the tilting is consis
tent and it depends solely on the camera position? How do we know if we are the ones
causing the issue by misinterpreting how this depth estimate should be used? Another
way was picking a stateoftheart model like MeTRAbs [18], which also uses the camera
matrices as an input to the model and claims to provide a better 3D pose estimation from
only one angle. However, it lacks all the benefits that made us choose BlazePose in the
beggining. Alternatively, we could have calculated the 3D pose by triangulating from all
eight cameras, project this skeleton into each 2D camera and use this annotations to train
MediaPipe’s model further in order to correct the tilting behaviour.

Even though we think some of these options would have worked, some were far from
the scope of the thesis, and some others were deemed too timeconsuming. Thus, we
decided to leave the oneview case and focus on the severalcamera scenario for the rest
of the thesis.
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(a) View from the camera running the model.

(b) Side view of the 3D output, showcasing the tilting issue.

Figure 3.5: Onecamera 3D pose estimation attempt, from the view in (a).
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4 Data Acquisition
In this chapter, we will present the data acquisition setup used for this thesis and the
considerations made to design it. The pipeline has been designed to be modular, flexible,
and fast to work with, allowing for easy integration of future additional sensing devices. It
consists of two stages: raw data acquisition and preprocessing.

In order to conduct our experimental work, we need a dataset of videos of a single person
performing a set of activities (standing, walking, running, jumping) recorded from several
angles with different cameras. The video timestamps need to be synchronized accurately
since the video frames will be used to triangulate the 3D skeleton of the person in the
scene. Luckily for us, Grazper was starting to build a video rig in Refshaløen to record
their own pose detection datasets when we initiated the collaboration, so we were involved
with the recording process from the beginning. Apart from the video feeds, we need some
data on the foot contact. The person in the scene will wear a pair of soles with integrated
pressure sensors while performing the activities.

Since the nature of the two capturing methods (video and pressure) is very different, so
is their acquisitions and there is little interplay between them. We will describe them
separately in the following sections of this chapter.

4.1 Raw data
4.1.1 Video
The video rig consists of a flat wooden floor of 10x10 meters, with scaffolding around
it where the lighting and cameras are placed. Grazper has developed its own cameras
using an Nvidia Jetson Xavier NX [19] with a USB camera. Each camera is an embedded
device running Linux, powered through PoE. The camera and its components can be seen
in image 4.1.

Figure 4.1: Picture of the interior of a Grazper camera. The Nvidia Jetson, USB camera
and power supply are visible in the image.
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The cameras are calibrated individually with the help of a checkerboard pattern to de
termine their intrinsic parameters and correct for lens distortion. These calibration pa
rameters are specific to each camera and are not expected to change unless something
unexpected happens; only if they receive a hit or the lens moves. Before recording, the
cameras are calibrated between them by setting a big checkerboard pattern in the center
of the scene, ensuring it can be seen from all angles. The origin of world coordinates is
set with the checkerboard pattern, and each camera estimates its extrinsic parameters.

The setup consists of 8 cameras connected through a switch to a central computer, the rig
server. Each camera runs a Precision Time Protocol (PTP) [20] daemon that synchronizes
its clock with the central computer’s clock, which runs the PTP server. A UI application
lets the user visualize the cameras’ feed, set some camera parameters (such as exposure
time and gamma correction), and start the recording process.

Each camera records at 30 fps and saves the raw image frames in RGB format to its local
hard disk. Once it has done recording, the central server downloads and stores each
sequence of frames.

4.1.2 Soles

Figure 4.2: Sensor insoles picture and outline with sensor positions.

Grazper acquired a pair of sensor insoles [11] to gather data on foot pressure, a com
mercial solution that includes 16 pressure sensors and an accelerometer per foot. Figure
4.2 shows the outline of the soles and the sensor positions. Each sole is powered by
a rechargeable coin cell and is connected through Bluetooth Low Energy to an Android
phone. Moticon provides a phone app, see image 4.3, that can be used to control the sole
pair. They record at 100 Hz and can be set to record directly in their local memory. The
raw measurements can then be transferred to a computer using the phone app, getting a
csv file with all the different channels timestamped.

The recording process is entirely separate from the video process, making it easy to inte
grate with Grazper’s system. However, this separation also introduced some challenges
in terms of synchronization, which ended up being tricky to solve. After contacting Moti
con, they informed us that the phone app uses the phone’s clock for timestamping when
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Figure 4.3: Screenshot of the Moticon OpenGo Android app.

the acquisition starts. This was a problem since the phone clock runs independently from
the server’s clock, and we somehow needed to synchronize them.

Since both the rig server and the phone use the Network Time Protocol (NTP, much less
precise than PTP) [21] to set their clocks, our first try was setting the server to sync to the
same NTP server as the phone. Recording this way resulted in an offset of 34 seconds,
with much inconsistency.

In order to use this solution, one would need to synchronize the two feeds manually. We
developed a small python app that allowed manually synchronizing the two feeds. The
app allows the user to play/pause the video and select any frame in the video using the
bottom slider. When paused, the user can move frame by frame. At the same time, the
raw soles signal is shown at the bottom. The app lets the user add time offsets to the
soles signal until they become synchronized. Then, the user can save the offset to the
soles file. A screenshot of the app is shown in image 4.4. Jumping at the beginning of
the video and falling on both feet, one had a stepfunctionlike signal on the pressure that
could be used to adjust it down to the same frame of error.

However, this solution poses several obvious inconveniences. First, the person needs to
jump at the beginning of every taken recording, or the adjustment will be less precise. One
must go manually through each video, which poses an inconvenience and an additional
source of error. This solution was unacceptable since Grazper intended to incorporate
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Figure 4.4: Screenshot of the manual synchronization app.

the sole pressure in their recording setup. The synchronization had to be done program
matically.

It turns out that setting the clock manually in an Android phone is a restricted operation
because of security reasons, and it cannot be done unless the device is rooted. To this
end, Grazper acquired a cheap Xiaomi Redmi 9A, and we proceeded to root it. Once
it was rooted, we first tried running a PTP daemon on the phone, just like the cameras,
for which we installed Termux, a terminal emulator. However, the network interface on
the phone does not support hardware or software timestamping, so PTP was out of the
picture. The next attempt was using NTP. We set an NTP server running on the rig server
and the phone to synchronize to it through NTP. This way, we brought the offset down to
0.81 seconds, but the offset was still pretty inconsistent, which made the solution a bit
better than the previous one but still unusable.

We hypothesized that the source of inconsistency was the synchronization being con
ducted over a WiFi network. In order to address this issue, we decided to attempt syn
chronization through USB. The Android Debug Bridge (ADB) offers a way to access the
Android phone’s shell from a computer. Within the Android shell, there is a binary called
date which, according to its documentation, should allow for time setting with microsecond
precision. However, in practice, it could only function with seconds and would produce
an error when attempting to use a more precise setting.

However, an environment variable is available in Linux and Android shells, EPOCHREALTIME,
that provides the system clock with a resolution of microseconds. We discovered that
this variable obtains the time from a kernel function, gettimeofday, and a corresponding
settimeofday also exists, which supports microseconds. We developed two straightfor
ward C programs to access and set the phone’s time using these functions. The programs
return and accept a Unix timestamp with a decimal value. The code of both programs,
get_time.c and set_time.c, are included in the appendix A for reference. It should be
noted that the setter function does not include any checks, and the consequences of set
ting a negative time are unknown. The two programs were copied to the Android phone
and compiled using Termux and the GNU C Compiler (gcc) version available through its
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package manager.

Once compiled, the executable sits in the phone and can be run from Termux and our com
puter when connected via ADB. However, we observed a delay when writing the time on
the phone directly from the computer. Thus we implemented a bash script that computes
an estimate of the round trip time of this operation by setting and reading several times
and compensates for the delay, assuming that the operation of reading time is negligible
vs. setting it. The bash script is also available to the reader in the appendix A.

We tested this synchronization method experimentally, and all the trials showed that the
sole signal consistently lagged by approximately 50 milliseconds. Upon further analysis,
it was determined that the phone app introduced the delay during the timestamping of the
recording start. However, as the delay was constant in time, the compensation was easy
to implement, ultimately allowing for successful synchronization of the signals down to the
same frame.

In conclusion, assuming the cameras have already been calibrated one by one for esti
mating their intrinsic parameters, the final acquisition method consists of 4 steps:

1. Calibrate all cameras to find the set of world coordinates in the checkerboard pattern
and estimate each camera’s extrinsic parameters.

2. Synchronize the phone’s clock to the computer where the PTP server is running. In
our case, the same machine is used as a camera recording server.

3. Record several videos using the Moticon app to signal the soles when to start and
stop the acquisition.

4. Once done, download the videos to the recording server and dump the soles csv
files in the server. This data then gets automatically copied to a central filestoring
server so it can be accessed from any computer in the Grazper network.

4.2 Preprocessing
4.2.1 Video
The raw RGB frames are at this step corrected for lens distortion and exported to mp4
using h264 encoding, yielding eight synchronized videos in mp4 format. There is an ad
ditional json file that stores metadata of the recording: no. of participants, labels on what
tasks they are performing, extrinsic and intrinsic camera parameters, and timestamps of
each frame in the recording.

4.2.2 Soles
As for the soles, the raw data has a capture frequency of 100 Hz, far superior to the 30 fps
of the video. This number of measurements per second would let us observe changes in
pressure with a frequency of up to 50 Hz (Nyquist theorem), which is an order of magnitude
above human body movement. Tapping a foot to a metronome set at 300 bpm is as quick
as it gets, and this would just be 5 Hz. Also, the measurements do not correspond to any
specific video frame since they do not happen simultaneously.

For this reason, we decided to undersample the soles signal. For each video frame,
we interpolated the value of each channel linearly from the two closest real soles sam
ples. We initially tried just picking the nearest value. However, we observed that, for very
rapid events like kicking something or stomping and raising a foot very fast, one could be
unlucky with the interpolation and end up with these events disappearing from the final
signal. In these edge cases, linear interpolation would at least detect some pressure, and
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thus we decided to use this method in the final pipeline. After undersampling, the data is
saved in a json file.

The Mediapipe skeleton we use for pose detection (see chapter 3) has two keypoints per
foot, one in the heel and one in the toe. So, to get an estimate of the pressure on each
keypoint we take a mean of readings: the mean of sensors 1 to 8 will account for the heel,
and the mean of sensors 7 to 16 will account for the toe, see figure 4.2.

Finally, since this pressure estimate depends on the weight of the wearer, we needed to
normalize the signal. We observed that through our captured recordings, the pressure
distribution on the toes differed from the one on the heels. The toe channels consistently
received more pressure than the heel ones. Thus, we decided to standardize them sep
arately.

We take both left and right toe channels and sum them. Then, we find the mean pressure
along the entire recording and half it. We finally normalize by dividing each channel by
this value. We normalize the heel channels in the same way. By normalizing this way, a
value of 1 roughly corresponds to a quarter of the pressure when the person is resting.
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5 Experiment pipeline
We will now discuss the pipeline we designed to conduct the experiments in this thesis.
Our purpose is to show that incorporating knowledge about foot contact can improve the
3D pose estimation when fewer cameras are involved. As mentioned in the introduction,
knowledge about foot contact unlocks the possibility of performing the task from only one
camera angle and improving the severalcamera case.

In the following sections, we will show the different components of the pipeline and how
they work together. They are designed in a modular way that allows changing them
quickly. Figure 5.1 shows a diagram of the experiment pipeline.

Video feeds (8 cameras)

Pose estimation
module

Grazper video annotation

2D Pose 3D Pose
Smoothing

Skeleton statistics
Contact estimation

Ground truth

Video feed subset
(2-3-4 cameras) 

Post-processing
module

Soles data

Estimation

Metrics
module 

Figure 5.1: Diagram of the experiment pipeline building blocks

5.1 Ground truth annotation
First, we need some annotations on the videos. We need a 3D skeleton that acts as
ground truth to have reference points to compare our proposed methods’ performance.
We will use Grazper’s annotation tool (figure 5.2) to achieve it. They use this tool internally
to annotate all their recordings and train their own 3D pose estimation models. Grazper
developed this solution, so we will describe it shortly without providing much detail since
it is out of the scope of this thesis.

The tool extracts a 3D pose as described in chapter 3, computing a 2D pose estimation
in each camera view and then triangulating a 3D skeleton using the extrinsic camera
parameters. Since the triangulation is done frame by frame, the resulting skeleton is
often tremulous. For this reason, they smooth the skeleton in the temporal domain using
a Kalman filter. Later, they perform some skeleton statistics, calculate the bones’ length
and estimate contact points based on the velocity and position of specific keypoints, and
recalculate the skeleton enforcing these constraints.
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Figure 5.2: Screenshot of Grazper’s annotation tool.

The result is a skeleton that looks much more natural and realistic, with smooth move
ments. Also, as the 3D pose is estimated from 8 different camera angles, the location of
the keypoints is very accurate, and there are hardly any occlusions, mainly when deal
ing with only one person in the scene. Grazper’s annotation tool also allows manually
annotating particular frames when the automatic annotation fails.

Next, we will describe the different building blocks of the experiment pipeline in detail. It
is worth mentioning that every output of every building block has been designed to be
compatible with Grazper’s video annotation tool. This allows us to visualize every output
easily and has been of great help when building it and interpreting the results.

5.2 Pose estimation module
This block selects a subset of cameras and runs them through the process described in 3.
However, due to the reduced number of cameras, occlusions are to be expected, and in
some frames, a particular keypoint may only be visible from one camera angle. This may
result in incomplete 3D skeletons since our triangulation script requires each keypoint to
be visible with a certain level of confidence from at least two cameras.

The output of this block will be a sequence of 3D skeletons, one per frame, with the 3D
position + a confidence mask (1 if could triangulate, 0 if not) for each keypoint, represented
in a 2D matrix of 33 by 4.
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5.3 Postprocessing module
The postprocessing module takes the base 3D skeleton from the pose estimation module
and modifies it, incorporating knowledge from foot contact, either by taking the captured
sole signal or estimating it. We will discuss how we estimate the pressure signal later in
chapter 6. Let us focus on how we use the signal to modify the 3D skeleton.

We built two different modules; PostProcessor Offline (PP Offline), meant to process the
skeletons having access to the whole recording, and PP Online, to only look back in time
so that it could potentially be used in online applications.

5.3.1 PP Offline
This module takes the entire soles sequence, the value of pressure at each foot’s heel
and toe, and thresholds it by a parameter to binary classify the signal, whether there is
contact or not. After, we find the different sequences of continuous contact of each of the
keypoints in the video.

Based on the assumption that feet do not move when there is contact, we take each se
quence of contact of every keypoint and compute the average 3D position of the keypoint
during the entire sequence. We then replace the position of said keypoint with the aver
age position in every frame in the sequence. Keypoints that could not be triangulated are
not included in this calculation.

It is easy to imagine edge cases where this postprocessing method would break: videos
where a person is sliding or on a skateboard. Those cases have foot contact, but the
feet do move. However, the module could be expanded to account for them: one could
monitor the velocity of the keypoint and only act at points where the velocity is close
to 0. We tried this approach but encountered another issue. As the triangulation in the
pose estimation is done frame by frame, the 3D skeleton may flicker, leading to inaccurate
velocity estimates and compromising the entire postprocessing. A solution to this problem
would be to smooth the skeleton, similar to the way Grazper does for annotating data.
However, as we deemed the implementation of Kalman filters as out of the scope of this
thesis, we decided to leave the postprocessing method as it is.

5.3.2 PP Online
This module works the same way as PP Offline. We first threshold the signal and find the
contact sequences for each keypoint. Then go through all the sequences and compute
the mean position of the keypoint in the sequence. However, in this case, we only take its
mean by looking backward in time. Hence, the position of the keypoint will not be constant
throughout the sequence.

This postprocessor could be set up to work online. Of course, in this experiment, we are
just recreating it. The online setup would only make sense when estimating the pressure
value if we also use an online model for doing so. Pressure prediction will be discussed
in more detail in chapter 6.

Notice that both postprocessors only affect the position of the 4 keypoints in the feet.
We have restricted ourselves to this simple case because of time constraints. However,
the potential of this approach can be much more significant. Combining these post
processors with some knowledge about the length of bones, one could also recalculate
the position of the whole lower part of the body and make it less flickering, yielding a more
realistic output in the whole skeleton.
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5.4 Metrics module
This last module is where the 3D skeleton result of the postprocessing is compared against
the ground truth 3D skeleton. We have used several measures throughout the develop
ment of this thesis. Some might not be that interesting from a results point of view, but
they have helped in the debugging process. These measures include:

• Bias  Variance: Avg. absolute difference of the distance from the predicted skeleton
to the ground truth annotation over time and per keypoint. Also, the variance of this
metric.

• Root Mean Squared Error (RMSE): the squared root of the mean squared difference
of the predicted and the true skeletons.

• Percentage of Correct Keypoints (PCK): detected keypoints are marked as correct
if the distance between the predicted and true joint is within a particular selected
threshold. We take the average over the number of frames for each keypoint.

• Cloud points: A facet grid of 3x3 plots, where we visualize the distance vector be
tween the ground truth and the predicted skeleton on the different combinations of
the x, y, and zaxis.
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6 Sole pressure estimation
Sole pressure estimation constitutes the critical element of this Master’s thesis. If we
cannot predict it, the gains brought with foot contact knowledge will be relegated to the
recording case, where the person in the scene is wearing the sensor insoles. In this chap
ter, we describe our approach to preparing the data, designing the models, and training
them.

6.1 Input data
Our model should be able to take information from the scene and predict whether there
is foot contact or not. There are several options for what the input data should look like.

One approach could be using the video frames as input, designing the model first to detect
the person in the image and determine whether the person is touching the ground. If a
person were to tackle this problem, having this kind of input would be the easiest. Even
in cases where the perspective might produce some confusion, one can use additional
information like the hair’s position or the clothes’ movement to determine the contact.
However, one would need an extensive annotated dataset, with variability on the person
performing the task, the clothes they are wearing, the perspective of the cameras, and
the scenario for the trained model to be generalizable to any other scene. This approach
was not feasible, as we didn’t have the time or means to create such a dataset in this
thesis’ span.

Using the skeleton output from the pose estimation is a better option since it is more
independent of these details. The skeleton features will still vary from person to person,
but these differences frame a much easier problem for artificial intelligence to learn than
the previous one. One could use the 2D pose output from Mediapipe and the camera
parameters as input to the model. This solution would also be useful in the onecamera
case.

Since we are limiting ourselves to the severalcamera case in this thesis, we can use
the triangulated 3D pose in world coordinates directly. This has the added benefit that
the same frame can be triangulated from different subsets of cameras, which would, in
essence, be the same pose. However, this yields a slightly different skeleton, with different
joints missing due to occlusion. This sort of jitter in the dataset benefits the model to learn
[22], making our model more resilient to missing joints. Since these triangulations are
highly correlated, it is crucial to ensure they do not end in both the training and validation
set. This will be addressed again in section 6.4, where we discuss the training setup.

We decided to work with a subset of four cameras out of the eight we have available. This
gives us a total of

(

8
4

)

= 70 different 3D skeletons from a single video. We decided to split
the video in sequences of seq_length number of frames, a hyperparameter that will need
tuning in the training phase. Later, we normalize the input by taking the mean position
over frames of the skeleton’s ”center of mass”, the mean position of all 33 keypoints. This
way, we normalize the input around 0 but still keep the relative movements during that
sequence, which are needed to predict sole contact. Figure 6.1 shows 4 frames out of a
normalized sequence of 30, with a skeleton walking.
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6.2 Models
We propose two model architectures to tackle this task. A simple model meant to act
as a baseline, and a more modern architecture, suited to work with timeseries data. It is
important to note that details such as the no. of hidden layers and their sizes have changed
during the experimentation and tables 6.1 and 6.2 only showcase our final choices.

6.2.1 Baseline
A feedforward neural network as described in [23]. It simultaneously takes the entire
flattened sequence of frames, a vector of seq_length×33×4. We use six fully connected
hidden layers, diminishing in size. We use a Rectified Linear Unit (ReLU) as an activation
function [24], except in the output where we use a hyperbolic tangent. We use this to
match the other model’s output, described in the following subsection. Table 6.1 shows
the model’s architecture in more detail.

Layer Type Size

Input seq_length x 33 x 4
1 Fullyconnected 2048

ReLU
2 Fullyconnected 1024

ReLU
3 Fullyconnected 512

ReLU
4 Fullyconnected 256

ReLU
5 Fullyconnected 128

ReLU
6 Fullyconnected seq_length x 4

tanh
Output seq_length x 4

Table 6.1: Baseline model architecture

6.2.2 SoleNet
Given the temporal nature of our dataset, we decided to use a Recurrent Neural Network
(RNN) as the model for sole pressure estimation, more specifically, an architecture based
on the unidirectional Gated Recurrent Unit (GRU) [25]. The GRU has a gating mechanism
that helps the network remember temporal dependencies by reusing its previous outputs
in the computation of a new one. In each forward pass, the GRU computes the following
operation:

zt = σ
(

W (z)xt + U (z)ht−1

)

,

rt = σ
(

W (r)xt + U (r)ht−1

)

,

h′t = tanh
(

W (h)xt + rt ⊙ U (h)ht−1

)

,

ht = zt ⊙ ht−1 + (1− zt)⊙ h′t.

xt denotes the layer input at a given time t, and ht the output, also referred to as hidden
state. They can have different sizes, and thus hidden_size is a design choice. zt and rt
denote the update and the reset gates, respectively, both vectors of length hidden_size.
W denotes three different matrices of weights for the input, with size hidden_size×input_size,
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while U denotes three square matrices of size hidden_size×hidden_size. σ denotes the
sigmoid function and ⊙ the Hadamard product, commonly referred to as the elementwise
product. Each new output ht is calculated with the input xt and the previous output ht−1,
which allows the network to learn temporal patterns. It is worth remarking that the output
of the GRU is a hyperbolic tangent, which produces an output between 1 and 1.

Our proposed architecture consists of several layers of GRUs, also diminishing in size.
Each frame is fed one by one as an input, and each layer will use its previous output to
calculate the new output. The architecture is described in table 6.2.

Layer Type Size

Input 33 x 4
1 GRU 1024
2 GRU 256
3 GRU 64
4 GRU 16
4 GRU 4
Output 4

Table 6.2: Solenet model architecture

6.3 Labels
After the process described in section 4.2.2, we obtain a reading of average pressure in
the left heel, left toe, right heel, and right toe, matching the video frames and normalizing
so they are independent of the weight of the person. A reading of 1 roughly corresponds
to each channel’s pressure in a resting standing pose. Already by walking, there are
moments where most of the weight is applied to one of the channels, yielding a value of 3
or 4 on this scale. When jumping and falling on one foot, this value can even reach 10. In
the previous section, we have seen that both proposed models have an output restricted
to the [−1, 1] domain, so some modification must be taken before we can use them.

One possible approach is modifying the network, by changing the last activation function
to be something different than a hyperbolic tangent, for example, a ReLU. This step is
easy to do in the baseline model, but on the GRU, that change compromises the whole
structure of the last layer and would hurt training. Another possibility is adding a simple
linear layer to let the model learn the scaling.

However, since we will use this model to predict whether there is contact, we are not so
interested in if the value of the pressure is 5 or 10 since we are going to classify both in
the same group after thresholding. Nevertheless, we are interested in the first moments
of contact, where the signal is smaller than 1, and the transition between contact and
no contact takes place. For this reason, applying the hyperbolic tangent to the pressure
signal made sense, saturating the moments with no contact and contact to 1 and 1,
respectively, and only focusing on the area of interest between these two. That is the
approach we decided to take, scaling the signal by two constants a and b that were found
experimentally trying different values and inspecting the resulting signals:

y′t = tanh (a · yt + b) , ∀t ∈ [0, seq_length],

where a = 3.5 and b = −2.5. A sample of the resulting signals can be seen in figure 6.1,
where the values saturate at 1 and 1, but keep the transients when the balance changes
from the heel to the toe.
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6.4 Training
We split the data into three sets for training and validating the models: training, validation
and test. We set aside one specific video for the test set, use the rest of the record
ings for training and validation, and split them, leaving 70% of the chunks in the training
set. At this step, we ensure that all the different camera triangulations of a sequence
fall into the same set. Otherwise, we would have sequences in the validation set prac
tically equal to others the model was trained with, perverting any validation metric. We
decided to use Mean Squared Error as the loss function and train the models using Adam
[26], a gradientbased optimization algorithm, and train both models for several epochs,
feeding the input sequences in batches. The hyperparameters that can be set are thus
seq_length, no_epochs, batch_size and the initial learning_rate.

Halfway through the experiment phase, we decided to add data augmentation in our train
ing setup to prevent overfitting. Following the advice in [22] and [27], we created an aug
mentor module that, if enabled, takes the sequence before it is fed to the model in the
training loop and rotates it by a random amount around the Y axes and adds some ran
dom jitter to every joint in the skeleton in every frame. These random translation variances
are also hyperparameters.
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Figure 6.1: Frames of a sequence of 30 frames extracted from the dataset, depicting a
walking skeleton, together with the corresponding pressure labels.
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7 Experiments and results
In this chapter, we will describe the experiments carried over the development of this
thesis. The methodology has been described in chapters 4, 5 and 6 and presented with
a clear separation of the different tasks and the different modules that tackle each task.

It is worth mentioning that, in reality, the progress has been more convoluted, and all three
parts have been growing simultaneously, making it hard to describe the experiments in
the order they were conducted. Data acquisition was the starting point, but we started
working on the experiment pipeline from the first moment we got some synchronized data.
It was only when the synchronization problems in the data acquisition were solved that
we started working on pressure estimation, at which point the experiment pipeline was
pretty advanced. However, we could not conduct the final experiments without the trained
models, so we finished that part before running the final experiments.

Instead, we will present each part, focusing on making them clear to the reader, explaining
the purpose of each step and the obtained results. First, we will focus on data acquisition,
then sole pressure estimation, and finally on the experiment pipeline results.

Figure 7.1: Picture of the unfinished wooden floor in Refshaløen

7.1 Data acquisition
The different challenges presented regarding synchronization and the final working state
of the data acquisition pipeline have been discussed thoroughly in chapter 4. However,
we have not addressed all the problems of different natures we encountered in this phase.
It is often overlooked how complicated it can be to acquire a quality dataset, especially at
a time when we can find highquality, curated datasets ready to be used in a csv file from
websites like Kaggle.

As mentioned in the chapter, Grazper’s idea was to build a recording rig in Refshaløen,
Copenhagen, from scratch, starting in an empty industrial warehouse to record their
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datasets. Many problems arose, such as building a flat 10x10 meter wooden floor, scaf
folding around the stage to hold the cameras and lights, setting up the whole network,
recording server, sole integration, delays in material deliveries, problems with leaking
pipes, figuring out with lawyers the simplest legal way to be able to have someone recorded
in datasets for commercial purposes, and a long list of etceteras. All these inconveniences
eliminated the possibility of bringing people in to record at the time of the thesis. So, we
had to resort to recording with people from Grazper whenever possible. Late November
and December 2022 were two months when the temperatures in Copenhagen dropped a
lot, reaching 10ºC, which also made recording difficult.

To top this up, the first sensor insoles Moticon provided were faulty and broke before we
could take the recordings needed for the thesis. Almost onethird of the pressure sensors
stopped working. Figure 7.2 shows a screenshot where the faulty sensors are highlighted.
This compromised the method for obtaining one channel of average pressure per heel and
toe described in chapter 4, especially in the right foot. We changed the computation to
use only the working sensors.

Figure 7.2: Screenshot of the Moticon OpenGo App, highlighting the faulty sensors in red.

The final dataset consists of seven videos, one and a half to two minutes long each,
recorded from 8 synchronized cameras and with a person wearing the sensor insoles.
Six of these recordings were made with faulty soles. In total, we recorded three people
performing acts like walking, running, sitting in a chair, or even doing some acrobatics.
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7.2 Sole pressure prediction
Now we will describe the process of training the models for sole prediction. The details of
how we treat the recordings in order to obtain the dataset we will use for training have al
ready been discussed in chapter 6. The final dataset consists of sequences of seq_length
frames from a total of 6 different recordings, with a normalised 3D skeleton on them, and
the pressure signal for each keypoint in the feet.

7.2.1 Simple dataset
We split the dataset in two, training and validation, keeping 70% of the sequences in the
training set. We keep a separate recording as a test set, in order to test the final model with
sequences that are as uncorrelated as possible, and to help us visualize the behaviour of
our network in a full recording.

It is important to remark that we tried out different model complexities, some that would
not learn for being too simple, some that would overfit very easily, until we found a good
compromise with the model architectures described in tables 6.1 and 6.2.

We pick MSE as our loss function, and we train the networks for 300 epochs, passing
through the entire training set in each epoch. After each training epoch, we check on the
validation set, to monitor overfitting. After trying out different hyperparameters, we picked
a seq_length of 30 frames, a batch_size of 256 and an initial learning_rate of 10−3.
We also monitor the accuracy, by using a threshold on both predicted and real labels we
chose to be 0. At every step of training, we changed this hyperparameters arounds in
search of a better option, but we consistently found they were a pretty good choice and
kept coming back to them.

Figure 7.3 shows the loss and accuracy evolution for both training and validation for both
models. Looking at the training loss curve, it is clear that both models are learning. The
validation loss is however not going down at all, indicating that the model is overfitting.
Weirdly enough, this doesn’t have a negative effect in validation accuracy, just seems to
stagnate. We suspect this behaviour is caused by the low amount of data we are working
with, and how correlated it is. So, we decided to implement some augmentations in the
training data.
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Figure 7.3: Loss and accuracy during training on the simple dataset.
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7.2.2 Augmented data
The method for performing data augmentation is explained in section 6.4. We perform
rotations by a random angle of the sequences and add jitter to each keypoint in every
frame before feeding them in to the model in the training phase. The loss and accuracy
curves during training on the augmented data are shown in figure 7.4.

The impact of data augmentation is clear when looking at the validation loss, reinforcing
our previous hypothesis: the current model architectures could learn much more if we
had more data. Training for more than 300 epochs would again cause overfitting. So, we
tried a last attempt to prevent this overfitting, by adding L2 regularization.

7.2.3 Augmented data + L2 weight regularization
We added L2 regularization on the network weights. We found it would work best with
a parameter of 10−5 for the baseline, and 5 · 10−6 for SoleNet. The results are shown in
figure 7.5.

Even though it may seem, by the validation loss curve, that the models are not learning
correctly, the accuracy tells a different story. The regularized solenet performs better than
the previous one, while the baseline remains being practically the same.
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Figure 7.4: Loss and accuracy over epochs during training with data augmentation.

Guiding 3D Human Pose Estimation using Feet Pressure Sensors 29



0 50 100 150 200 250 300
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

M
SE

Baseline (train)
SoleNet (train)
Baseline (valid)
SoleNet (valid)

(a) MSE Loss

0 50 100 150 200 250 300
Epoch

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Baseline (train)
SoleNet (train)
Baseline (valid)
SoleNet (valid)

(b) Accuracy

Figure 7.5: Loss and accuracy over epochs adding L2 regularization.
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For easiness of comparison, we’ll add two more figures, comparing validation loss and
accuracy for the different methods of training. Figure 7.6 shows the comparison for the
baseline model, while figure 7.7 shows the comparison for the SoleNet.
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Figure 7.6: Validation loss and accuracy over epochs for the baseline model on the
different runs.
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Figure 7.7: Validation loss and accuracy over epochs for the SoleNet model on the
different runs.
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In both figure 7.6 and figure 7.7, we can see that we get the most positive effect from
augmenting the data. Weight regularization helps a bit in solenet, but not that much on
the baseline. We strongly think this a sign we would need more data.

To finalize, we run the trained models from the three different methods on the test set,
yielding the final results shown in table 7.1. Overall, we can affirm that both models are, in
fact, learning to predict the sole pressure values from the pose. However, the values of the
loss are an order of magnitude higher than the ones we were obtaining on the validation
set. This indicates that the training and validation sets, even though they contain different
sequences, are not that uncorrelated within them. This makes sense, they come from the
same video and have the same person on them.

Network Training method Loss (MSE) Accuracy (%)

Baseline
Simple 32.1 66.6
Augmented 26.6 70.83
Augmented + regularized 26.15 73.6

SoleNet
Simple 29.06 71.77
Augmented 23.15 75.15
Augmented + regularized 21.76 76.52
Table 7.1: Test results of the trained models.

Let us now see how the output of both models actually looks like on the test set. Figures
7.8 and 7.9 show the predicted output vs the real pressure of the right heel pressure
channel of both models. The first figure showcases a person walking, while the other one
a person getting up from sitting in the ground.

Looking at figure 7.8, it’s clear that the model has learnt successfully the task of walking,
besides some weird artifacts in the baseline model that could be caused by the way we
are feeding the data into the model. The output from SoleNet is remarkably close to the
real signal with a smooth output, which we attribute to the GRU architecture.

However, figure 7.9 tells us a different story. When the model is fed a task it hasn’t seen
before, like someone standing, the output is just as bad as random noise, evidence of our
previous suspicion: our dataset is too narrow, and we would need a bigger pool of different
tasks recorded in order to obtain a model that could be used in a reallife application. One
can even notice a wavelike behaviour in the solenet output that matches the walking
frequency, showing that our model is overfitting on that specific task.

However, considering the small amount of data we had, the fact that it was acquired in
house using our pipeline and the simplicity of the proposed models, we consider this result
a sound success. We have successfully proved that estimating the sole pressure from
the 3D pose is not only feasible, but also within reach for Grazper with their current setup.
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(a) Baseline model

(b) SoleNet model

Figure 7.8: Models output vs. true label on the test recording, showing a person walking.
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(a) Baseline model

(b) SoleNet model

Figure 7.9: Models output vs. true label on the test recording, showing a person getting
up from sitting on the floor.
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7.3 Experiment pipeline
After showing in last section that sole pressure estimation from pose is possible, it is time
to finally incorporate the SoleNet model into the experiment pipeline described in chapter
5 and obtain this thesis’ final results.

The purpose of these experiments is to show that by incorporating knowledge about foot
contact, either a real signal from the insole sensors or a prediction from SoleNet, we can
improve the pose detection algorithm currently used by Grazper in the fewercamera case.
For this purpose, we will take the test recording and select a number of cameras. We will
then use each possible combination of cameras to obtain a 3D pose out of each of them.
Then, we will modify the output pose with by using PP Offline and PP Online, both using
the real sole signal and the estimated one to modify the pose. We will then compare the
output to the real ground truth 3D pose, obtained with Grazper’s annotation tool.

Since we are using all possible combinations of cameras, and we were running the ex
periment pipeline on all videos, the computational cost of this operation was rather high,
and some experiments could take up to 23 hours. Since we were also setting some hy
perparameters in the triangulation routine (minimal visibility from 2 camera angles,
see section 3.3) and on the postprocessing modules (threshold on the soles signal), we
needed to tune them and run the pipeline several times, which ended up taking a long
time.

This encouraged us to rewrite the pipeline in a more efficient manner, incorporating a
caching system that eliminated unnecessary recalculations and wrote the triangulation
part making use of Python’s multiprocessing module, since the triangulation task can be
parallelized and we had a 24thread CPU that was not being used. This helped reduce
the running time of the pipeline, and allowed us to obtain the following results.

We can observe in both figure 7.10 and 7.11, the effect of treating a triangulated skeleton
from 2 cameras with PP Offline and PP Online respectively on the test recording. Each
plot shows the effect of using no postprocessor, the postprocessor with the real pressure
signal, and the postprocessor with the estimated pressure signal by SoleNet. We show
the average bias per keypoint throughout the entire recording and triangulated from all
possible combinations of 2 cameras. We are excluding the PCK and RMSE plots out of
the results, since in the end they do not add any relevant information that cannot be seen
in the biasstandard deviation plot.

Overall, we observed very little difference from using PP Offline or PP Online as a postpro
cessor. We can notice some improvement both in the error, and in the standard deviation
of said error when going from the triangulated signal to using the postprocessor with the
real sole signal. However, the postprocessing seems to break when using the predictor.
This behaviour was expected though, given how poorly the predicting model performed
in tasks like the one in 7.9b.
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Figure 7.10: Average error and standard deviation of the error per keypoint in the test
recording from 2 cameras with PP Offline.
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Figure 7.11: Average error and standard deviation of the error per keypoint in the test
recording from 2 cameras with PP Online.
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Both our postprocessors seem to have a positive impact when modifying the triangulated
pose from 2 cameras. We will now inspect the opposite case, when triangulating from 8.
The results are shown in figure 7.12 and 7.13. In this case, the triangulation is itself much
closer to the ground truth skeleton, and the postprocessing do not provide a consistent
improvement. This also aligns with our expectations, sole data is useful in the case where
less cameras are involved.
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Figure 7.12: Average error and standard deviation of the error per keypoint in the test
recording from 8 cameras with PP Offline.
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Figure 7.13: Average error and standard deviation of the error per keypoint in the test
recording from 8 cameras with PP Online.
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Since the behaviour of both postprocessing modules was very chaotic when using SoleNet,
we decided to run an experiment with a recording that the model had seen during training
with 2 cameras, to perform a sanity check. This way we can make sure the reason behind
this behaviour is in fact, not having enough data in the training pipeline. The results are
shown in figures 7.14 and 7.15. Here, we can observe not only that the postprocessor
helps, but that the predictor approaches this solution. Again, since we are using 2 cam
eras the postprocessor was expected to help. And, since the model has been trained on
some of the sequences and validated on others, we expect it to approach the result for
the real one, but not quite be there.

le
ft_

to
e

rig
ht
_t
oe

le
ft_

he
el

rig
ht
_h
ee

l0.00

0.01

0.02

0.03

0.04

0.05

0.06

m

2_cams
2_cams_PP_Offline
2_cams_PP_Offline_Predictor

(a) Bias

le
ft_

to
e

rig
ht
_t
oe

le
ft_

he
el

rig
ht
_h
ee

l0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

m

2_cams
2_cams_PP_Offline
2_cams_PP_Offline_Predictor

(b) Standard deviations

Figure 7.14: Average error and standard deviation of the error per keypoint in one of the
training recordings from 2 cameras with PP Offline.
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Figure 7.15: Average error and standard deviation of the error per keypoint in one of the
training recordings from 2 cameras with PP Online.
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8 Conclusion
We believe the work in this thesis to be an overall success. Through the course of the
study we have been able to set up a data acquisition capable of producing synchronized
videos with sole pressure signal and videos and automatically process them. We have
implemented our own 2D pose detection and 3D triangulation module that predicts a 3D
pose comparable to that produced by Grazper’s annotation tool using fewer cameras.
We have used our generated poses, together with the sole signals to train two model
architectures for predicting sole pressure based solely on the pose. Finally, we have
designed two ways of incorporating sole data that make our predicted skeleton be closer
to the one obtained from 8 cameras.

These results serve as a strong proof of concept that has the potential for further devel
opment and integration into AI solutions like Grazper’s.

The final data acquisition setup proves to be reliable, stable, and automated, enabling
Grazper to easily record highquality datasets with the potential to obtain synchronized
ground truth sole pressure signals.

Our research has demonstrated the feasibility of predicting sole pressure using deep
learning techniques. However, room for improvement still exists. Our model proposals
were basic, leaving room for exploration of more complex models, potentially even using
the image as input instead of the 3D skeleton.

Furthermore, the amount of data used to train our networks was found to be insufficient.
To resolve this, more recordings that encompass a wider range of tasks could be taken.
Alternatively, a different approach could be taken, considering the binary nature of the
pressure signals. By annotating existing datasets with information on contact or non
contact based on the position and velocity of keypoints, we open the possibility of using
readily available datasets in our pipeline, which we believe could significantly improve
performance.

Finally, we have shown how the sole signal can enhance the performance of a pose detec
tor in scenarios with fewer cameras. This area also offers opportunities for improvement.
In the case of single camera, current stateoftheart struggles to accurately place the
pseudo3D pose in the scene, and our approach has the potential to significantly improve
this.

In the multicamera scenario, we have already developed a simple method to enhance
the triangulation by incorporating sole data. However, there is still room for improvement
in this area through the use of more complex postprocessing techniques.

In conclusion, our thesis has achieved its goals and delivered significant results. We have
demonstrated the ability to enhance the accuracy of pose detection in scenarios with fewer
cameras through the incorporation of sole signals, and the possibility to estimate them.
These results offer a strong proof of concept for future AI solutions and demonstrate the
potential of this technique for further development and advancement.
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A Appendix: Code listings
get_time.c
#include <stdio.h>
#include <sys/time.h>

int main(void)
{

struct timeval tv;
struct timezone tz;
gettimeofday(&tv, &tz);
printf("%d.%d\n", tv.tv_sec, tv.tv_usec);
return 0;

}

set_time.c
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

void set_time(time_t seconds, suseconds_t microseconds);

void set_time(time_t seconds, suseconds_t microseconds)
{

struct timeval tv;
tv.tv_sec = seconds;
tv.tv_usec = microseconds;
settimeofday(&tv, NULL);

}

int main(int argc, char *argv[])
{

int seconds, microseconds;
sscanf(argv[1], "%d.%d",&seconds, &microseconds);
set_time(seconds, microseconds);
return 0;

}

Guiding 3D Human Pose Estimation using Feet Pressure Sensors 43



check_time_reset.sh
#!/bin/bash
# Checks the offset between phone's and computer's clock every second.

while true
do

phone_time=$(adb shell "su -c '/data/data/com.termux/files/home/time/get_time'")
current_time=$(date +"%s.%6N")
diff=$(echo $phone_time-$current_time | bc)

echo "[$(date -d @$current_time)] Offset: $diff" | tee -a log
sleep 1

done

sync.sh
#!/bin/bash
# Program for synchronizing a phone's clock to a computer.
# Needs to have set_time.c and get_time.c compiled on the phone.
# It calculates the offset of writing and getting the time on the
# phone doing several trials (5 by default) and then writes the time
# compensating it (assuming that get_time is negligible against set_time).

# Seconds to send the start acquisition signal from the phone to the soles.
phone_to_soles_delay=0.05

n=${1:-5}
echo "Synchronizing! Estimating offset with $n iterations" | tee -a log.txt

path="/data/data/com.termux/files/home/time" # path to set_time and get_time
offset=0 # Variable that will store the running avg of the offset
num_accepted=0

while [ $num_accepted -lt $n ]
do

# Writing and reading the current time
current_time=$(date +"%s.%6N")
adb shell "su -c '$path/set_time $current_time'"
phone_time=$(adb shell "su -c '$path/get_time'")
current_time=$(date +"%s.%6N")
# Calculate difference
diff=$(echo $phone_time-$current_time | bc)

# Only accept negative diffs. Sometimes adb takes longer to read the time from the
# phone and returns a great positive diff, which makes no sense
if (( $(echo "$diff < 0" | bc -l) ))
then

offset=$(echo "($num_accepted * $offset + $diff)/($num_accepted+1)"| bc -l)
num_accepted=$(($num_accepted+1))
# Print out
echo "[$(date -d @$current_time)] It. $num_accepted. \
Offset: $diff. Running avg: $offset" | tee -a log.txt

44 Guiding 3D Human Pose Estimation using Feet Pressure Sensors



fi
sleep 1

done

# Write compensating the offset
current_time=$(date +"%s.%6N")
offseted_time=$(echo "$current_time - $offset + $phone_to_soles_delay" | bc)
adb shell "su -c '$path/set_time $offseted_time'"
echo "[$(date -d @$current_time)] Synced!" | tee -a log.txt

./check_time_reset.sh
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