Wearable Technologies

| 2023

A wearable real-time kinetic measurement sensor setup for human locomotion

Huawei Wang, Akash Basu, Guillaume Durandau, Massimo Sartori

University of Twente, Twente


biomechanics, biomechatronics, monitors, sensors


Current laboratory-based setups (optical marker cameras + force plates) for human motion measurement require participants to stay in a constrained capture region which forbids rich movement types. This study established a fully wearable system, based on commercially available sensors (inertial measurement units + pressure insoles), that can measure both kinematic and kinetic motion data simultaneously and support wireless frame-by-frame streaming. In addition, its capability and accuracy were tested against a conventional laboratory-based setup. An experiment was conducted, with 9 participants wearing the wearable measurement system and performing 13 daily motion activities, from slow walking to fast running, together with vertical jump, squat, lunge, and single-leg landing, inside the capture space of the laboratory-based motion capture system. The recorded sensor data were post-processed to obtain joint angles, ground reaction forces (GRFs), and joint torques (via multi-body inverse dynamics). Compared to the laboratory-based system, the established wearable measurement system can measure accurate information of all lower limb joint angles (Pearson’s r = 0.929), vertical GRFs (Pearson’s r = 0.954), and ankle joint torques (Pearson’s r = 0.917). Center of pressure (CoP) in the anterior–posterior direction and knee joint torques were fairly matched (Pearson’s r = 0.683 and 0.612, respectively). Calculated hip joint torques and measured medial–lateral CoP did not match with the laboratory-based system (Pearson’s r = 0.21 and 0.47, respectively).

Moticon's Summary

In this study the authors validated Moticon sensor insoles against a conventional laboratory based set up. Validation tests included various types of movements ranging from slow walking up to vertical jumps. Besides readily available parameters from the Moticon sensor insoles also joint angles and joint torques were calculated based on the sensor insole data. The authors concluded that data on lower extremity joint angles, vertical ground reaction forces and ankle joint angles was sufficiently accurate when compared to data form the conventional measurement set up.

Contact Us
Book a free online demo or use the contact form to get in touch
Subscribe to our newsletter for regular updates

Select your desired system

The cutting edge test based outcome assessment system for health professionals and trainers

The most versatile toolkit for free data acquisition and comprehensive analytics in research

Have a general inquiry?

Write us a message for general questions about products and solutions or if you’d like to discuss other topics.

The form was sent successfully.

You will be contacted shortly.


Stay one step ahead!

Subscribe to our newsletter for the latest information on case studies, webinars, product updates and company news

Get support

Check our FAQ database for answers to frequently asked questions

Describe your issue in as much detail as possible. Include screenshots or files if applicable.

Need help?
Want a live demo?
Interested in prices?
Want to say hello?
Always just a call away
+49 89 2000 301 60