Contact
Need help?
For technical questions about your Moticon products
Want to say hello?
Drop us a message for general questions or inquiries
Want a live demo?
See our products live and ask your questions
Interested in prices?
Get an individual quote with the items you need
Always just a call away
+49 89 2000 301 60

Sensors

| 2022

Can Gait Features Help in Differentiating Parkinson’s Disease Medication States and Severity Levels? A Machine Learning Approach

Parkinson’s disease (PD) is one of the most prevalent neurological diseases, described by complex clinical phenotypes. The manifestations of PD include both motor and non-motor symptoms. We constituted an experimental protocol for the assessment of PD motor signs of lower extremities. Using a pair of sensor insoles, data were recorded from PD patients, Elderly and Adult groups. Assessment of PD patients has been performed by neurologists specialized in movement disorders using the Movement Disorder Society—Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)-Part III: Motor Examination, on both ON and OFF medication states. Using as a reference point the quantified metrics of MDS-UPDRS-Part III, severity levels were explored by classifying normal, mild, moderate, and severe levels of PD. Elaborating the recorded gait data, 18 temporal and spatial characteristics have been extracted. Subsequently, feature selection techniques were applied to reveal the dominant features to be used for four classification tasks. Specifically, for identifying relations between the spatial and temporal gait features on: PD and non-PD groups; PD, Elderly and Adults groups; PD and ON/OFF medication states; MDS-UPDRS: Part III and PD severity levels. AdaBoost, Extra Trees, and Random Forest classifiers, were trained and tested. Results showed a recognition accuracy of 88%, 73% and 81% for, the PD and non-PD groups, PD-related medication states, and PD severity levels relevant to MDS-UPDRS: Part III ratings, respectively.

Keywords

gait analysis, Parkinson’s disease, ON/OFF medication, MDS-UPDRS, severity levels, insoles, pressure sensors

Author/s

Chariklia Chatzaki, Vasileios Skaramagkas, Zinovia Kefalopoulou, Nikolaos Tachos, Nicholas Kostikis, Foivos Kanellos, Eleftherios Triantafyllou, Elisabeth Chroni, Dimitrios I. Fotiadis, Manolis Tsiknakis

Institution / Department

" Biomedical Informatics and eHealth Laboratory, Department of Electrical and Computer Engineering, Hellenic Mediterranean University, Estavromenos, Heraklion, Crete"

The form was sent successfully.

You will be contacted shortly.

moticon-rego-sensor-insole-live-event

Stay one step ahead!

Subscribe to our newsletter for the latest information on case studies, webinars, product updates and company news

Get support

Check our FAQ database for answers to frequently asked questions!


Describe your issue in as much detail as possible. Include screenshots or files if applicable.


Have a general inquiry?

Write us a message for general questions about products and solutions or if you’d like to discuss other topics.