Need help?
For technical questions about your Moticon products
Want to say hello?
Drop us a message for general questions or inquiries
Want a live demo?
See our products live and ask your questions
Interested in prices?
Get an individual quote with the items you need
Always just a call away
+49 89 2000 301 60


| 2022

Machine learning analysis of a digital insole versus clinical standard gait assessments for digital endpoint development

Biomechanical gait analysis informs clinical practice and research by linking characteristics of gait with neurological or musculoskeletal injury or disease. However, there are limitations to analyses conducted at gait labs as they require onerous construction of force plates into laboratories mimicking the lived environment, on-site patient assessments, as well as requiring specialist technicians to operate. Digital insoles may offer patient-centric solutions to these challenges. In this work, we demonstrate how a digital insole measuring osteoarthritis-specific gait signatures yields similar results to the clinical gait-lab standard. To achieve this, we constructed a machine learning model, trained on force plate data collected in participants with knee arthropathy and healthy controls. This model was highly predictive of force plate data from a validation set (area under the receiver operating characteristics curve (auROC) = 0.86; area under the precision-recall curve (auPR) = 0.90) and of a separate, independent digital insole dataset containing control and knee osteoarthritis subjects (auROC = 0.83; auPR = 0.86). After showing that digital insole derived gait characteristics are comparable to traditional gait measurements, we next show that a single stride of raw sensor time series data could be accurately assigned to each subject, highlighting that individuals (even healthy) using digital insoles can be identified by their gait characteristics. This work provides a framework for a promising alternative to traditional clinical gait analysis methods, adds to the growing body of knowledge regarding wearable technology analytical pipelines, and supports clinical development of at-home gait assessments, with the potential to improve the ease, frequency, and depth of patient monitoring.


osteoarthritis, clinical, gait


Matthew F. Wipperman, Allen Z. Lin, Kaitlyn M. Gayvert, Benjamin Lahner, Selin Somersan-Karakaya, Xuefang Wu, Joseph Im, Minji Lee, Bharatkumar Koyani, Ian Setliff, Malika Thakur, Daoyu Duan, Aurora Breazna, Fang Wang, Wei Keat Lim, Gabor Halasz, Jacek Urbanek, Yamini Patel, Gurinder S. Atwal, Jennifer D. Hamilton, Clotilde Huyghues-Despointes, Oren Levy, Andreja Avbersek, Rinol Alaj, Sara C. Hamon, Olivier Harari

Institution / Department

Precision Medicine, Regeneron Pharmaceuticals Inc, Tarrytown, NY

The form was sent successfully.

You will be contacted shortly.


Stay one step ahead!

Subscribe to our newsletter for the latest information on case studies, webinars, product updates and company news

Get support

Check our FAQ database for answers to frequently asked questions!

Describe your issue in as much detail as possible. Include screenshots or files if applicable.

Have a general inquiry?

Write us a message for general questions about products and solutions or if you’d like to discuss other topics.