Frontiers in Neurology

| 2022

Heading Direction Is Significantly Biased by Preceding Whole-Body Roll-Orientation While Lying

Alexander Andrea Tarnutzer, Vasco Duarte da Costa, Denise Baumann, Simone Hemm

Department of Neurology, Cantonal Hospital of Baden, Baden

Keywords

prior knowledge, spatial orientation and navigation, post-tilt bias, perceived straight-ahead, inertial measurement unit, sensor shoe insoles

Abstract

Background: After a prolonged static whole-body roll-tilt, a significant bias of the internal estimates of the direction of gravity has been observed when assessing the subjective visual vertical. Objective: We hypothesized that this post-tilt bias represents a more general phenomenon, broadly affecting spatial orientation and navigation. Specifically, we predicted that after the prolonged roll-tilt to either side perceived straight-ahead would also be biased. Methods: Twenty-five healthy participants were asked to rest in three different lying positions (supine, right-ear-down, and left-ear-down) for 5 min (“adaptation period”) prior to walking straight-ahead blindfolded for 2 min. Walking was recorded with the inertial measurement unit sensors attached to different body locations and with sensor shoe insoles. The raw data was segmented with a gait–event detection method. The Heading direction was determined and linear mixed-effects models were used for statistical analyses. Results: A significant bias in heading into the direction of the previous roll-tilt position was observed in the post-adaptation trials. This bias was identified in both measurement systems and decreased again over the 2-min walking period. Conclusions: The bias observed further confirms the influence of prior knowledge on spatial orientation and navigation. Specifically, it underlines the broad impact of a shifting internal estimate of direction of gravity over a range of distinct paradigms, illustrating similar decay time constants. In the broader context, the observed bias in perceived straight-ahead emphasizes that getting up in the morning after a good night's sleep is a vulnerable period, with an increased risk of falls and fall-related injuries due to non-availability of optimally tuned internal estimates of the direction of gravity and the direction of straight-ahead.

Moticon's Summary

In this study researchers aimed to investigate post-tilt bias, which is a bias affecting the graviception of the human body following a prolonged whole-body roll-tilt. Patients were instructed to rest in different lying positions and subsequently performed a blindfolded 2 min walking task to assess directional bias. IMUs and Moticon sensor insoles were employed for data collection. The investigators found a bias of heading in the direction of the previous roll-tilt position.

Contact Us
Book a free online demo or use the contact form to get in touch
Newsletter
Subscribe to our newsletter for regular updates

Select your desired system

The cutting edge test based outcome assessment system for health professionals and trainers

The most versatile toolkit for free data acquisition and comprehensive analytics in research

Have a general inquiry?

Write us a message for general questions about products and solutions or if you’d like to discuss other topics.


The form was sent successfully.

You will be contacted shortly.

moticon-rego-sensor-insole-live-event

Stay one step ahead!

Subscribe to our newsletter for the latest information on case studies, webinars, product updates and company news

Get support

Check our FAQ database for answers to frequently asked questions

Describe your issue in as much detail as possible. Include screenshots or files if applicable.


Need help?
Want a live demo?
Interested in prices?
Want to say hello?
Always just a call away
+49 89 2000 301 60