Contact
Need help?
For technical questions about your Moticon products
Want to say hello?
Drop us a message for general questions or inquiries
Want a live demo?
See our products live and ask your questions
Interested in prices?
Get an individual quote with the items you need
Always just a call away
+49 89 2000 301 60

8th International Conference on Control, Decision and Information Technologies (CoDIT)

| 2023

Parkinson’s Disease Gait Evaluation Leveraging Wearable Insoles and Deep Learning Approach

Gait evaluation is important for apprehension and management of different neurocognitive disorders (NCD). The gait events are changing with the age factor and this variability is being incorrectly linked with people with NCD. So, there is a high need to analyze gait events correctly. The gait analysis is mostly performed on temporal and spectral feature extraction in which there is a high rate of missing important features. Apart from this, monitoring and quantification of Parkinson’s disease patients raise many therapeutic challenges in terms of severity analysis of motor symptoms i.e. freezing of gait (FOG), bradykinesia and continuous remote monitoring of patients. The objective of this study is to use a smart insole dataset for the assessment of computational techniques focusing on gait evaluation. The objective of this research study is to use continuous wavelet transform to convert time series signals into an images instead of using more traditional techniques for dealing with time series based on e.g. recurrent architectures. The results evidence that the proposed system works efficiently with the accuracy of 96.5% in gait variability analyzing three cohorts i.e. adults, elderly, and patients with Parkinson’s disease (PwPD) and 91% for analyzing the gait symptoms in different severity stages of PD patients.

Keywords

Wireless communication, Wireless sensor networks, Continuous wavelet transforms, Parkinson's disease, Wearable computers, Time series analysis, Feature extraction

Author/s

Asma Channa, Nirvana Popescu, Muhammad Faisal

Institution / Department

University POLITEHNICA of Bucharest, University Mediterranea of Reggio Calabria, Bucharest

The form was sent successfully.

You will be contacted shortly.

moticon-rego-sensor-insole-live-event

Stay one step ahead!

Subscribe to our newsletter for the latest information on case studies, webinars, product updates and company news

Get support

Check our FAQ database for answers to frequently asked questions!


Describe your issue in as much detail as possible. Include screenshots or files if applicable.


Have a general inquiry?

Write us a message for general questions about products and solutions or if you’d like to discuss other topics.