2023

8th International Conference on Control, Decision and Information Technologies (CoDIT)

Parkinson’s Disease Gait Evaluation Leveraging Wearable Insoles and Deep Learning Approach

Asma Channa, Nirvana Popescu, Muhammad Faisal

University POLITEHNICA of Bucharest, University Mediterranea of Reggio Calabria, Bucharest

Schlagwörter

Wireless communication, Wireless sensor networks, Continuous wavelet transforms, Parkinson's disease, Wearable computers, Time series analysis, Feature extraction

Wireless communication, Wireless sensor networks, Continuous wavelet transforms, Parkinson's disease, Wearable computers, Time series analysis, Feature extraction

Zusammenfassung

Gait evaluation is important for apprehension and management of different neurocognitive disorders (NCD). The gait events are changing with the age factor and this variability is being incorrectly linked with people with NCD. So, there is a high need to analyze gait events correctly. The gait analysis is mostly performed on temporal and spectral feature extraction in which there is a high rate of missing important features. Apart from this, monitoring and quantification of Parkinson's disease patients raise many therapeutic challenges in terms of severity analysis of motor symptoms i.e. freezing of gait (FOG), bradykinesia and continuous remote monitoring of patients. The objective of this study is to use a smart insole dataset for the assessment of computational techniques focusing on gait evaluation. The objective of this research study is to use continuous wavelet transform to convert time series signals into an images instead of using more traditional techniques for dealing with time series based on e.g. recurrent architectures. The results evidence that the proposed system works efficiently with the accuracy of 96.5% in gait variability analyzing three cohorts i.e. adults, elderly, and patients with Parkinson's disease (PwPD) and 91% for analyzing the gait symptoms in different severity stages of PD patients.

Moticon's Schlussfolgerungen

In this proceeding the auhors developed a gait assessment approach for the detection of Parkinsons's disease related gait characteristics leveraging deep learning and sensor insole data. Moticon sensor insoles were used to provide time series gait data which served as the data basis for the deep learning neural network model.

Kontaktiere uns
Buche eine kostenlose Online-Demo oder verwende das Kontaktformular, um mit uns in Kontakt zu treten.
Newsletter
Trage Dich in unseren Newsletter ein, um regelmäßige Updates zu erhalten
Verwendete Produkte von Moticon

Select your desired system

The cutting edge test based outcome assessment system for health professionals and trainers

The most versatile toolkit for free data acquisition and comprehensive analytics in research

Have a general inquiry?

Write us a message for general questions about products and solutions or if you’d like to discuss other topics.


Wähle Deine Produktelinie

Mobile Ganganalysen und sportmotorische Tests für Trainer und Therapeuten – objektiv und effizient.

Das flexible System für freie Datenerfassung und fortgeschrittene Analysen in der Forschung.

Du möchtest eine Anfrage stellen?

Schreibe uns eine Nachricht zu allgemeinen Fragen über Produkte oder zu anwendungsbezogenen Themen, die Du besprechen möchtest.


Das Formular wurde erfolgreich gesendet.

Wir werden uns in Kürze mit dir in Verbindung setzen.

moticon-rego-sensor-insole-live-event

Immer einen Schritt voraus!

Abonniere unseren Newsletter für die neuesten Informationen zu Fallstudien, Webinaren, Produkt-Updates und Neuigkeiten bei Moticon

Hole dir Unterstützung

Finde Antworten zu den häufigsten Fragen in unseren FAQ

Beschreibe Dein Problem so detailliert wie möglich. Hänge Screenshots oder Daten an, sofern das hilfreich ist.


Need help?
Want a live demo?
Interested in prices?
Want to say hello?
Always just a call away
+49 89 2000 301 60
Du brauchst Unterstützung?
Du möchtest eine Live Demo?
Interessiert an Preisen?
Du hast Fragen?
Nur einen Anruf entfernt
+49 89 2000 301 60

The form was sent successfully.

You will be contacted shortly.

Get support

Check our FAQ database for answers to frequently asked questions

Describe your issue in as much detail as possible. Include screenshots or files if applicable.