Need help?
For technical questions about your Moticon products
Want to say hello?
Drop us a message for general questions or inquiries
Want a live demo?
See our products live and ask your questions
Interested in prices?
Get an individual quote with the items you need
Always just a call away
+49 89 2000 301 60

Eurographics Symposium on Computer Animation

| 2022

UnderPressure: Deep Learning for Foot Contact Detection, Ground Reaction Force Estimation and Footskate Cleanup

Human motion synthesis and editing are essential to many applications like film post-production. However, they often introduce artefacts in motions, which can be detrimental to the perceived realism. In particular, footskating is a frequent and disturbing artefact requiring foot contacts knowledge to be cleaned up. Current approaches to obtain foot contact labels rely either on unreliable threshold-based heuristics or on tedious manual annotation. In this article, we address foot contact label detection from motion with a deep learning. To this end, we first publicly release UnderPressure, a novel motion capture database labelled with pressure insoles data serving as reliable knowledge of foot contact with the ground. Then, we design and train a deep neural network to estimate ground reaction forces exerted on the feet from motion data and then derive accurate foot contact labels. The evaluation of our model shows that we significantly outperform heuristic approaches based on height and velocity thresholds and that our approach is much more robust on motion sequences suffering from perturbations like noise or footskate. We further propose a fully automatic workflow for footskate cleanup: foot contact labels are first derived from estimated ground reaction forces. Then, footskate is removed by solving foot constraints through an optimisation-based inverse kinematics (IK) approach that ensures consistency with the estimated ground reaction forces. Beyond footskate cleanup, both the database and the method we propose could help to improve many approaches based on foot contact labels or ground reaction forces, including inverse dynamics problems like motion reconstruction and learning of deep motion models in motion synthesis or character animation. Our implementation, pre-trained model as well as links to database can be found at this https URL.


computer games, ground reaction force


Lucas Mourot, Ludovic Hoyet, François Le Clerc, Pierre Hellier

Institution / Department

Inria, Univ Rennes, CNRS, IRISA

The form was sent successfully.

You will be contacted shortly.


Stay one step ahead!

Subscribe to our newsletter for the latest information on case studies, webinars, product updates and company news

Get support

Check our FAQ database for answers to frequently asked questions!

Describe your issue in as much detail as possible. Include screenshots or files if applicable.

Have a general inquiry?

Write us a message for general questions about products and solutions or if you’d like to discuss other topics.