2022

Eurographics Symposium on Computer Animation

UnderPressure: Deep Learning for Foot Contact Detection, Ground Reaction Force Estimation and Footskate Cleanup

Lucas Mourot, Ludovic Hoyet, François Le Clerc, Pierre Hellier

Inria, Univ Rennes, CNRS, IRISA

Schlagwörter

Computer games, ground reaction force

Computer games, ground reaction force

Zusammenfassung

Human motion synthesis and editing are essential to many applications like film post-production. However, they often introduce artefacts in motions, which can be detrimental to the perceived realism. In particular, footskating is a frequent and disturbing artefact requiring foot contacts knowledge to be cleaned up. Current approaches to obtain foot contact labels rely either on unreliable threshold-based heuristics or on tedious manual annotation. In this article, we address foot contact label detection from motion with a deep learning. To this end, we first publicly release UnderPressure, a novel motion capture database labelled with pressure insoles data serving as reliable knowledge of foot contact with the ground. Then, we design and train a deep neural network to estimate ground reaction forces exerted on the feet from motion data and then derive accurate foot contact labels. The evaluation of our model shows that we significantly outperform heuristic approaches based on height and velocity thresholds and that our approach is much more robust on motion sequences suffering from perturbations like noise or footskate. We further propose a fully automatic workflow for footskate cleanup: foot contact labels are first derived from estimated ground reaction forces. Then, footskate is removed by solving foot constraints through an optimisation-based inverse kinematics (IK) approach that ensures consistency with the estimated ground reaction forces. Beyond footskate cleanup, both the database and the method we propose could help to improve many approaches based on foot contact labels or ground reaction forces, including inverse dynamics problems like motion reconstruction and learning of deep motion models in motion synthesis or character animation.

Moticon's Schlussfolgerungen

In this publications the authors introduce and leverage a publicly availavle dataset for usage in a deep neural network to estimate vertical ground reaction forces. Corresponding foot contact labels are derived from gound reaction force measurments with Moticon sensor insoles. The authors suggest that the introuced data base and method may aid in improving approches in motion sythesis.

Kontaktiere uns
Buche eine kostenlose Online-Demo oder verwende das Kontaktformular, um mit uns in Kontakt zu treten.
Newsletter
Trage Dich in unseren Newsletter ein, um regelmäßige Updates zu erhalten
Verwendete Produkte von Moticon

Select your desired system

The cutting edge test based outcome assessment system for health professionals and trainers

The most versatile toolkit for free data acquisition and comprehensive analytics in research

Have a general inquiry?

Write us a message for general questions about products and solutions or if you’d like to discuss other topics.


Wähle Deine Produktelinie

Mobile Ganganalysen und sportmotorische Tests für Trainer und Therapeuten – objektiv und effizient.

Das flexible System für freie Datenerfassung und fortgeschrittene Analysen in der Forschung.

Du möchtest eine Anfrage stellen?

Schreibe uns eine Nachricht zu allgemeinen Fragen über Produkte oder zu anwendungsbezogenen Themen, die Du besprechen möchtest.


Das Formular wurde erfolgreich gesendet.

Wir werden uns in Kürze mit dir in Verbindung setzen.

moticon-rego-sensor-insole-live-event

Immer einen Schritt voraus!

Abonniere unseren Newsletter für die neuesten Informationen zu Fallstudien, Webinaren, Produkt-Updates und Neuigkeiten bei Moticon

Hole dir Unterstützung

Finde Antworten zu den häufigsten Fragen in unseren FAQ

Beschreibe Dein Problem so detailliert wie möglich. Hänge Screenshots oder Daten an, sofern das hilfreich ist.


Need help?
Want a live demo?
Interested in prices?
Want to say hello?
Always just a call away
+49 89 2000 301 60
Du brauchst Unterstützung?
Du möchtest eine Live Demo?
Interessiert an Preisen?
Du hast Fragen?
Nur einen Anruf entfernt
+49 89 2000 301 60

The form was sent successfully.

You will be contacted shortly.

Get support

Check our FAQ database for answers to frequently asked questions

Describe your issue in as much detail as possible. Include screenshots or files if applicable.